Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T23:38:01.277Z Has data issue: false hasContentIssue false

Factors affecting head capsule development in field populations of Altica sylvia (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  20 November 2012

Josiane Goguen
Affiliation:
Département de Biologie, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
Gaétan Moreau*
Affiliation:
Département de Biologie, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
*
1Corresponding author (e-mail: gaetan.moreau@umoncton.ca).

Abstract

Traits such as larval growth rate and head capsule width are often measured in economically important insects to determine their developmental stage. However, these traits have the potential to vary between genotypes or in response to several ecological factors. To determine whether geographic or ecological factors cause variability in the head capsule width of Altica sylvia Malloch (Coleoptera: Chrysomelidae), and to verify whether measures of head capsule width are adequate to identify larval instars in this species, A. sylvia larvae were recovered from 35 fields of Vaccinium angustifolium Aiton (lowbush blueberry; Ericaceae) of eastern New Brunswick, Canada. The distribution of head capsule widths varied in response to accumulated degree-days, A. sylvia larval density, and latitude. An overlap between measures of head capsule width of first-instar and second-instar larvae in fields supporting a high density of A. sylvia larvae suggested that intraspecific competition caused a reduction in larval growth rate that affected head capsule development and may have induced developmental polymorphism. Based on these results, we stress that the sampling protocol of studies conducted to determine head capsule width intervals in a species should include diverse ecological settings as well as several locations within the range of the species.

Résumé

Différents traits tels que le taux de croissance et la taille de la capsule céphalique des larves sont souvent mesurés chez les insectes d'importance économique afin de déterminer leur stade de développement. Ces traits peuvent cependant varier entre les génotypes ou en réponse à plusieurs facteurs écologiques. Afin de déterminer si les facteurs géographiques ou écologiques causent de la variabilité dans la taille des capsules céphaliques d’Altica sylvia Malloch (Coleoptera: Chrysomelidae) et afin de vérifier si les mesures de taille des capsules céphaliques sont adéquates pour identifier le stade larvaire chez cette espèce, des larves d’A. sylvia furent échantillonnées dans trente-cinq champs de Vaccinium angustifolium Aiton (airelle à feuilles étroites ; Ericaceae) de l'Est du Nouveau-Brunswick, Canada. La distribution de la taille des capsules céphaliques a varié en réponse à l'accumulation des degrés-jours, la densité larvaire d’A. sylvia et la latitude. Un chevauchement entre les mesures de taille des capsules céphaliques des larves de premier et second stades dans les champs qui renferment de hautes densités de larves d’A. sylvia suggère que la compétition intraspécifique a entraîné une réduction du taux de croissance des larves qui affecta le développement des capsules céphaliques et a peut-être induit du polymorphisme de développement. D'après ces résultats, nous soulignons que le protocole d’échantillonnage des études visant à déterminer les intervalles de taille des capsules céphaliques chez une espèce devrait inclure diverses conditions écologiques ainsi que plusieurs localités parmi l'aire de répartition de l'espèce.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthiaume, R., Bauce, É., Hébert, C., Brodeur, J. 2007. Developmental polymorphism in a Newfoundland population of the hemlock looper, Lambdina fiscellaria (Lepidoptera: Geometridae). Environmental Entomology, 36: 707712.CrossRefGoogle Scholar
Borror, D.J.White, R.E. 1991. Les insectes de l'Amérique du Nord (au nord du Mexique). Éditions Broquet, La Prairie, Québec, Canada.Google Scholar
Crozier, L. 2001. The blueberry flea beetle. Lowbush blueberry fact sheet. Nova Scotia Department of Agriculture and Marketing, Truro, Nova Scotia, Canada.Google Scholar
De'ath, G. 2002. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology, 83: 11051117.Google Scholar
Dyar, H.G. 1890. The number of molts in Lepidopterous larvae. Psyche, 5: 420422.CrossRefGoogle Scholar
Esperk, T., Tammaru, T., Nylin, S. 2007. Intraspecific variability in number of larval instars in insects. Journal of Economic Entomology, 100: 627645.CrossRefGoogle ScholarPubMed
Finnegan, R.J. 1958. The pine weevil, Pissodes approximates Hopk., in southern Ontario. The Canadian Entomologist, 90: 348354.CrossRefGoogle Scholar
Frago, E., Selfa, J., Pujade-Villar, J., Guara, M., Bauce, É. 2009. Age and size thresholds for pupation and developmental polymorphism in the browntail moth, Euproctis chrysorrhoea (Lepidoptera: Lymantriidae), under conditions that either emulate diapause or prevent it. Journal of Insect Physiology, 55: 952958.CrossRefGoogle ScholarPubMed
Ghent, A.W. 1956. Linear increment in width of the head capsule of two species of sawflies. The Canadian Entomologist, 88: 1723.CrossRefGoogle Scholar
Hatcher, P.E., Paul, N.D., Ayres, P.G., Whittaker, J.B. 1994. The effect of a foliar disease (rust) on the development of Gastrophysa viridula (Coleoptera: Chrysomelidae). Ecological Entomology, 19: 349369.CrossRefGoogle Scholar
Howe, R.W. 1956. The biology of the two common storage species of Oryzaephilus (Coleoptera, Cucujidae). Annals of Applied Biology, 44: 341355.CrossRefGoogle Scholar
Hunter, M.D.Willmer, P.G. 1989. The potential for interspecific competition between two abundant defoliators on oak: leaf damage and habitat quality. Ecological Entomology, 14: 267277.CrossRefGoogle Scholar
Iwantsch, G.F.Smilowitz, Z. 1975. Relationships between the parasitoid Hyposoter exiguae and the cabbage looper, Trichoplusia ni: effects on head capsule width, live and dry weights, and hemolymph specific gravity of hosts at different ages. The Canadian Entomologist, 107: 927934.CrossRefGoogle Scholar
Leonard, D.E. 1968. Effects of density of larvae on the biology of the gypsy moth (Porthetria dispar). Entomologia Experimentalis et Applicata, 11: 291304.CrossRefGoogle Scholar
Leonard, D.E. 1970a. Intrinsic factors causing qualitative changes in populations of Porthetria dispar (Lepidoptera: Lymantriidae). The Canadian Entomologist, 102: 239249.CrossRefGoogle Scholar
Leonard, D.E. 1970b. Effects of starvation on behaviour, number of larval instars, and developmental rate of Porthetria dispar. Journal of Insect Physiology, 16: 2531.CrossRefGoogle Scholar
LeSage, L. 1995. Revision of the costate species of Altica Müller of North America north of Mexico (Coleoptera: Chrysomelidae). The Canadian Entomologist, 127: 295411.CrossRefGoogle Scholar
Maund, C.Chiasson, G. 1997. Blueberry flea beetle. Fact sheet C2.1.0. Department of Agriculture and Rural Development, Fredericton, New Brunswick, Canada.Google Scholar
Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Tedders, W.L. 2010. Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets. Journal of Entomological Science, 45: 7590.CrossRefGoogle Scholar
Moreau, G.Bauce, É. 2001. Developmental polymorphism: a major factor for understanding sublethal effects of Bacillus thuringiensis. Entomologia Experimentalis et Applicata, 98: 133140.CrossRefGoogle Scholar
Nealis, V. 1987. The number of instars in jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), and the effect of parasitism on head capsule width and development time. The Canadian Entomologist, 119: 773777.CrossRefGoogle Scholar
Neilson, W.T.A.Crozier, L.M. 1989. Insectes ravageurs. In La production du bleuet nain. Edited by C.R. Blatt, I.V. Hall, K.I.N. Jensen, W.T.A. Neilson, P.D. Hildebrand, N.L. Nickerson, R.K. Prange, P.D. Lidster, L. Crozier and J.D. Silbey. Agriculture Canada Publication 1477/F, Ottawa, Ontario, Canada. pp. 2940.Google Scholar
Ouellette, M. 1998. Description du cycle biologique, de la dynamique et de la gestion des populations de l'altise de l'airelle (Coleoptera: Chrysomelidae) dans des bleuetières cultivées au nord-est du Nouveau-Brunswick. M.Sc Dissertation. Université de Moncton, Moncton, Canada.Google Scholar
Parsons, K., Quiring, D., Piene, H., Moreau, G. 2005. Relationship between balsam fir sawfly density and defoliation in balsam fir. Forest Ecology and Management, 205: 325331.CrossRefGoogle Scholar
Piene, H. 1983. Nondestructive estimation of foliar biomass in balsam fir. Canadian Journal of Forest Research, 13: 672677.CrossRefGoogle Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Retnakaran, A. 1973. Hormonal induction of supernumerary instars in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 105: 459461.CrossRefGoogle Scholar
SAS Institute. 2009. Base SAS® 9.2 procedures guide. SAS Institute Inc., Cary, North Carolina, United States of America.Google Scholar
Schmidt, F.H.Lauer, W. 1977. Developmental polymorphism in Choristoneura spp. (Lepidoptera: Tortricidae). The Canadian Entomologist, 105: 459461.Google Scholar
Scott, J.A. 1986. The butterflies of North America: a natural history and field guide. Standford University Press, Standford, California, United States of America.CrossRefGoogle Scholar
Wigglesworth, V.B. 1972. The principles of insect physiology, 7th ed. Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar
Wise, M.J.Weinberg, A.M. 2002. Prior flea beetle herbivory affects oviposition preference and larval performance of a potato beetle on their shared host plant. Ecological Entomology, 27: 115122.CrossRefGoogle Scholar
Woods, W.C. 1918. Altica torquata Le Conte, the blueberry flea-beetle. Maine Agricultural Experiment Station Bulletin, 273: 194204.Google Scholar
Yarborough, D.E.Drummond, F. 2001. Integrated crop management field scouting guide for lowbush blueberries. University of Maine Cooperative Extension Wild Blueberry Fact Sheet 204, Orono, Maine, United States of America.Google Scholar