Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T23:53:05.320Z Has data issue: false hasContentIssue false

FACTORS AFFECTING INFECTIVITY OF VAIRIMORPHA NECATRIX (MICROSPORIDIA: NOSEMATIDAE) IN TRICHOPLUSIA NI (LEPIDOPTERA: NOCTUIAE)

Published online by Cambridge University Press:  31 May 2012

Wei Hsuang Chu
Affiliation:
Research Station, Agriculture Canada, Harrow, Ontario N0R 1G0
Robert P. Jaques
Affiliation:
Research Station, Agriculture Canada, Harrow, Ontario N0R 1G0

Abstract

Ingested dosages of 10.9 and 16.5 spores of Vairimorpha necatrix (Kramer) 7 and 27 weeks old, respectively, killed 50% of third-instar larvae of the cabbage looper, Trichoplusia ni (Hübner). Time to death of 50% of larvae (LT50) decreased from 14 to 3 days with increases in dosage from 5 × 101 to 5 × 106 spores (2-week-old)/Iarva. The LT50 for 5 × 101 spores/larva increased from 14 to 25 days with storage of spores at 4°C for 2 and 93 weeks, respectively. Spores applied to soil lost little activity during cool weather but spores applied in summer were inactivated within 60 days. Desiccation or exposure to sunlight or artificial light inactivated the spores. Rate of development of disease was increased by feeding host larvae a diet containing increased proportions of casein or sucrose. The optimum temperature for disease development in T. ni was 25°C.

Résumé

Cinquante pourcent des larves du troisième stade de l’arpenteuse du chou, Trichoplusia ni (Hübner), sont mortes suite à l’ingestion de doses de 10.9 et 16.5 spores de Vairimorpha necatrix (Kramer) âgées de 7 à 27 semaines, respectivement. Le temps nécessaire pour tuer 50% des larves (TL50) a diminué de 14 à 3 jours avec une augmentation de la dose de 5 × 101 à 5 × 106 spores (âgées de 2 sem.)/larve. Le TL50 à la dose 5 × 101 spores/larve est passé de 14 à 25 jours lorsque le temps d’entreposage des spores à 4°C fût prolongé de 2 à 93 semaines, respectivement. Les spores appliquées au sol sont restées actives par température froide, mais ont été inactivées en 60 jours lorsqu’appliquées durant l’été. La dessiccation ou l’exposition au soleil ou à la lumière artificielle ont rendu les spores inactives. La maladie s’est développée plus rapidement lorsque les larves infectées étaient nourries d’une diète contenant des proportions plus élevées de caséine ou de sucrose. La température optimale de développement de la maladie chez T. ni a été de 25°C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, W. H. 1977. Etude d'une Microsporidiose de l'Arpenteuse du Chou, Trichoplusia ni (Hübner) (Lepidoptere, Noctuidae). Ph.D. Thesis, L'Université Pierre et Marie Curie, Paris. 57 pp.Google Scholar
Chu, W. H. and Jaques, R. P.. 1979. Pathologie d'une microsporidiose de l'arpenteuse du chou, Trichoplusia ni (Lep: Noctuidae), par Vairimorpha necatrix. Entomophaga 24: 229235.CrossRefGoogle Scholar
David, W. A. L. and Gardiner, B. O. C.. 1967. The effect of heat, cold, and prolonged storage on granulosis virus of Pieris brassicae. J. invert. Path. 9: 555562.CrossRefGoogle ScholarPubMed
Fowler, J. L. 1971. The use of disc-gel electrophoresis for the identification of insect pathogenic microsporidia. Ph.D. Dissertation, University of California, Riverside.Google Scholar
George, C. R. 1971. The effects of malnutrition on growth and mortality of the red rust flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) parasitized by Nosema whitei (Microsporidia: Nosematidae). J. invert. Path. 18: 383388.CrossRefGoogle Scholar
Ignoffo, C. M. and Garcia, C.. 1965. Infection of the cabbage looper, bollworm, tobacco budworm, and pink bollworm with spores of Matesia grandis McLaughlin collected from boll weevils. J. invert. Path. 7: 260262.CrossRefGoogle Scholar
Jaques, R. P. 1967. The persistence of a nuclear polyhedrosis virus in the habitat of the host insect, Trichoplusia ni. I. Polyhedra deposited on foliage. Can. Ent. 99: 785794.CrossRefGoogle Scholar
Jaques, R. P. 1972. The inactivation of foliar deposits of viruses of Trichoplusia ni (Lepidoptera: Noctuidae) and Pieris rapae (Lepidoptera: Pieridae) and tests on protectant additives. Can. Ent. 104: 19851994.CrossRefGoogle Scholar
Jaques, R. P. 1977. Stability of entomopathogenic viruses. In Hostetter, D. L. and Ignoffo, C. M. (Eds.), Environmental Stability of Microbial Insecticides. Misc. Publ. ent. Soc. Am. 10 (3): 99116.Google Scholar
Kaya, H. K. 1977. Survival of spores of Vairimorpha (=Nosema) necatrix (Microsporidia:Nosematidae) exposed to sunlight, ultraviolet radiation and high temperature. J. invert. Path. 30: 192198.CrossRefGoogle Scholar
Kharazi-Pakdel, A. 1968. Recherches sur la pathogenie de Nosema melolonthae Krieg. Entomophaga 13: 289317.CrossRefGoogle Scholar
Maddox, J. V. 1966. Studies on microsporidiosis of the armyworm, Pseudaletia unipuncta (Haworth). Ph.D. Thesis, University of Illinois, Urbana. 184 pp.Google Scholar
Maddox, J. V. 1977. Stability of entomopathogenic protozoa. In Hostetter, D. L. and Ignoffo, C. M. (Eds.), Environmental Stability of Microbial Insecticides. Misc. Publ. ent. Soc. Am. 10 (3): 318.Google Scholar
Pramer, D. and Al-Rabiai, S.. 1973. Regulation of insect populations by protozoa and nematodes. In Bulla, L. A. (Ed.), Regulation of Insect Populations by Microorganisms. Ann. N.Y. Acad. Sci. 217: 8592.Google Scholar
Splittstoesser, C. M. and McEwen, F. L.. 1968. A microsporidian, Thelohania sp., pathogenic for the cabbage looper, Trichoplusia ni. J. invert. Path. 12: 231237.CrossRefGoogle Scholar
Tanabe, A. M. and Tamashiro, M.. 1967. The biology and pathogenicity of a microsporidian, Nosema trichoplusiae sp. n., of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae). J. invert. Path. 9: 188195.CrossRefGoogle Scholar