Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:51:17.333Z Has data issue: false hasContentIssue false

Factors influencing aestivation in Laricobius nigrinus (Coleoptera: Derodontidae), a predator of Adelges tsugae (Hemiptera: Adelgidae)

Published online by Cambridge University Press:  02 April 2012

A.B. Lamb*
Affiliation:
Entomology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319, United States of America
S.M. Salom
Affiliation:
Entomology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319, United States of America
L.T. Kok
Affiliation:
Entomology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319, United States of America
*
1 Corresponding author (e-mail: aslamb@vt.edu).

Abstract

Laricobius nigrinus Fender is being reared for release as a biological control agent for hemlock woolly adelgid (HWA), Adelges tsugae Annand. HWA is an introduced insect lethal to hemlock trees (Tsuga canadensis (L.) Carr. and T. caroliniana Engelm.) in the eastern United States. In nature, the predator (Laricobius nigrinus) and its prey (HWA) undergo a dormant period in the summer (aestivation). In the laboratory, the aestivation of L. nigrinus has not been synchronized with that of HWA, resulting in significant predator mortality. Four factors (genetics, temperature, photoperiod, and moisture) were investigated for their effects on aestivation in L. nigrinus. Both the number of individuals and the time at which they emerged from aestivation were measured in response to these factors. Temperature was the most important cue for termination of aestivation, and photoperiod was a modifying factor. High temperature and long day length delayed emergence and high moisture levels resulted in greater emergence but did not affect emergence time. Genetics, as represented by broods, was not a major factor in aestivation termination. These results have led to improvement in rearing L. nigrinus, since emergence from aestivation can now be synchronized with the active period of HWA. Increased success in rearing has expedited field releases of L. nigrinus in the eastern United States.

Résumé

Nous faisons l'élevage de Laricobius nigrinus Fender dans le but de le libérer comme agent de lutte biologique contre le puceron lanigère de la pruche (HWA), Adelges tsugae Annand. HWA est un insecte introduit qui est destructeur des pruches (Tsuga canadensis et T. caroliniana) dans l'est des États-Unis. En nature, le prédateur, Laricobius nigrinus, et sa proie (HWA) subissent une période de dormance en été (estivation). En laboratoire, l'estivation de L. nigrinus n'est pas synchronisée à celle d'HWA, ce qui cause une importante mortalité du prédateur. Nous avons examiné les effets de quatre facteurs (génétique, température, photopériode et humidité) sur l'estivation chez L. nigrinus; nous avons noté le nombre d'individus qui émergent de l'estivation et le moment de leur émergence en réaction à ces facteurs. La température est le signal le plus important pour la terminaison de l'estivation; la photopériode agit comme facteur modulateur. Les températures élevées et les photopériodes longues retardent l'émergence; les niveaux élevés d'humidité accroissent l'émergence, mais n'affectent pas le moment de l'émergence. La génétique, représentée par les diverses couvées, n'est pas un facteur important dans la terminaison de l'estivation. Ces résultats ont permis d'améliorer l'élevage de L. nigrinus, puisqu'il est possible de synchroniser l'émergence de l'estivation avec la période d'activité d'HWA. Ce succès accru de l'élevage a accéléré les libérations de L. nigrinus en nature dans l'est des États-Unis.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butterfield, J. 1976. The response of developmental rate to temperature in the univoltine cranefly, Tipula subnodicornis Zetterstedt. Oecologia, 25: 89100.CrossRefGoogle Scholar
Cheah, C., Montgomery, M.E., Salom, S., Parker, B.L., Costa, S., and Skinner, M. 2004. Biological control of hemlock woolly adelgid. USDA Forest Service, Forest Health Technology Enterprise Team, 2004–04. Coordinated by Reardon, R. and Onken, B.. Available from http://www.invasive.org/hwa/.Google Scholar
Danks, H.V. 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Danks, H.V. 2001. The nature of dormancy responses in insects. Acta Societatis Zoologicae Bohemicae, 65: 169179.Google Scholar
Ehlert, R., Topp, W., Thiemermann, S., and Brett, B. 1997. Phenotypic plasticity in Choleva agilis to maintain fitness in an unpredictable environment (Coleoptera: Cholevidae). Entomologia Generalis, 21: 145159.CrossRefGoogle Scholar
Finch, S., and Collier, R.H. 1985. Laboratory studies on aestivation in the cabbage root fly Delia radicum. Entomologia Experimentalis et Applicata, 38: 137144.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339.CrossRefGoogle Scholar
Garcia, R., Hagen, K.S., and Voigt, W.G. 1990. Life history termination of summer diapause and other seasonal adaptations of Agabus disintegratus Crotch (Coleoptera: Dytiscidae) in the central valley of California USA. Quaestiones Entomologicae, 26: 139150.Google Scholar
Havill, N.P., Montgomery, M.E., Yu, G., Shiyake, S., and Caccone, A. 2006. Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: Adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern North America. Annals of the Entomological Society of America, 99: 195203.CrossRefGoogle Scholar
Hodek, I., and Okuda, T. 1997. Regulation of adult diapause in Coccinella septempunctata septempunctata and C. septempunctata brucki from two regions of Japan (minireview). Entomophaga, 42: 139144.Google Scholar
Ineichen, H., Reisen-Willi, U., and Fischer, J. 1979. Experimental contributions to the ecology of Chironomus (Diptera). II. The influence of the photoperiod on the development of Chironomus plumosus in the 4th larval instar. Oecologia, 39: 161183.CrossRefGoogle Scholar
Lamb, A.B. 2005. Evaluating the suitability of Laricobius nigrinus Fender (Coleoptera: Derodontidae) as a biological control agent for hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae). Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.CrossRefGoogle Scholar
Lamb, A.B., Salom, S.M., and Kok, L.T. 2005 a. Survival and reproduction of Laricobius nigrinus Fender (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae) in field cages. Biological Control, 32: 200207.CrossRefGoogle Scholar
Lamb, A.B., Salom, S.M., and Kok, L.T. 2005 b. Guidelines for rearing Laricobius nigrinus (Coloeptera: Derodontidae). In Proceedings of the 3rd Symposium for hemlock woolly adelgid in the eastern United States, Asheville, North Carolina, 1–3 February 2005. Edited by Onken, B. and Reardon, R.. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia, 2005–01. pp. 309318.Google Scholar
Lamb, A.B., Salom, S.M., Kok, L.T., and Mausel, D.L. 2006. Confined field release of Laricobius nigrinus Fender (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae) in Virginia. Canadian Journal of Forest Research, 36: 369375.CrossRefGoogle Scholar
Lawrence, J.F., and Hlavac, T.F. 1979. Review of the Derodontidae (Coleoptera: Polyphaga) with new species from North America and Chile. Coleopterists Bulletin, 33: 369414.Google Scholar
Liu, Z.D., Gong, P.Y., Wu, K.J., and Li, D.M. 2004. Effects of high temperature on incidence of pupation, summer diapause and pupal weight of the cotton bollworm, Helicoverpa armigera (Hubner). Acta Entomologica Sinica, 47: 1419.Google Scholar
Lutz, P.E. 1974. Environmental factors controlling duration of larval instars in Tetragoneuria cynosura (Odonata). Ecology, 55: 630637.CrossRefGoogle Scholar
Madubunyi, L.C. 1978. External environmental factors regulating imaginal diapause in Hypera brunneipennis. Annals of the Entomological Society of America, 71: 3739.CrossRefGoogle Scholar
Mansingh, A., and Steele, R.W. 1973. Studies on insect dormancy. I. Physiology of hibernation in the larvae of the blackfly Prosimulium mysticum Peterson. Canadian Journal of Zoology, 51: 611618.CrossRefGoogle Scholar
Masaki, S. 1980. Summer diapause. Annual Review of Entomology, 25: 125.CrossRefGoogle Scholar
Mausel, D.L., Salom, S.M., and Kok, L.T. 2005. Experimental releases of Laricobius nigrinus for biological control of hemlock woolly adelgid in the eastern U.S. In Proceedings of the 3rd Symposium for hemlock woolly adelgid in the eastern United States, Asheville, North Carolina, 1–3 February 2005. Edited by Onken, B. and Reardon, R.. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia, 2005–01. pp. 134.Google Scholar
McClure, M.S. 1989. Evidence of a polymorphic life cycle in the hemlock woolly adelgid, Adelges tsugae (Homoptera: Adelgidae). Annals of the Entomological Society of America, 82: 5054.CrossRefGoogle Scholar
McClure, M.S. 1996. Natural enemies of adelgids in North America: their prospect for biological control of Adelges tsugae (Homoptera: Adelgidae). In Proceedings of the first hemlock woolly adelgid review. Edited by Salom, S.M., Tigner, T.C., and Reardon, R.C.. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia, 96–10. pp. 89101.Google Scholar
Morris, R.F. 1967. Factors inducing diapause in Hyphantria cunea. The Canadian Entomologist, 99: 522528.CrossRefGoogle Scholar
Nagasaka, K. 1992. Why does only Athalia japonica enter summer diapause among three sympatric Athalia sawflies feeding on crucifers? Research in Population Ecology, 34: 383395.CrossRefGoogle Scholar
Nagell, B. 1981. Overwintering strategy of two closely related forms of Cloeon (dipterum?) (Ephemeroptera) from Sweden and England. Freshwater Biology, 11: 237244.CrossRefGoogle Scholar
Nakai, T., and Takeda, M. 1995. Temperature and photoperiodic regulation of summer diapause and reproduction in Pyrrhalta humeralis (Coleoptera: Chrysomelidae). Applied Entomology and Zoology, 30: 295301.CrossRefGoogle Scholar
Narung, H.F., and Merritt, D.J. 1999. Moisture is required for the termination of egg diapause in the chrysomelid beetle, Homichloda barkeri. Entomologia Experimentalis et Applicata, 93: 201207.CrossRefGoogle Scholar
Nunes, M.V., and Saunders, D. 1999. Photoperiodic time measurement in insects: a review of clock models. Journal of Biological Rhythms, 14: 84104.CrossRefGoogle Scholar
Ohashi, K., Kawauchi, S.E., and Sakuratani, Y. 2003. Geographic and annual variation of summer-diapause expression in the ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), in Japan. Appied Entomology and Zoology, 38: 187196.CrossRefGoogle Scholar
Orwig, D.A., Foster, D.R., and Mausel, D.L. 2002. Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. Journal of Biogeography, 29: 14751487.CrossRefGoogle Scholar
Palmer, D.J., and Sheppard, J.L. 2002. Mass rearing Pseudoscymnus tsugae at the New Jersey Department of Agriculture: challenges and lessons. In Proceedings of Hemlock Woolly Adelgid in the Eastern United States Symposium, East Brunswick, New Jersey, 5–7 February 2002. Edited by Onken, B., Reardon, R., and Lashomb, J.. New Jersey Agricultural Experiment Station and Rutgers University, New Jersey. pp. 214220.Google Scholar
Ring, R.A. 1968. Termination of diapause in the larva of Lucilia causar L. (Diptera: Calliphoridae). Canadian Journal of Zoology, 46: 335344.CrossRefGoogle Scholar
Salom, S.M., Sharov, A.A., Mays, W.T., and Neal, J.W. 2001. Evaluation of aestival diapause in hemlock woolly adelgid (Homoptera: Adelgidae). Environmental Entomology, 30: 877882.CrossRefGoogle Scholar
SAS Institute Inc. 1992. SAS/STAT user's guide. Version 6. 5th ed. Vol. 1. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schoeps, K., Syrett, P., and Emberson, R.M. 1996. Summer diapause in Chrysolin hyperici and C. quadrigemina (Coleoptera: Chrysomelidae) in relation to biological control of St John's wort, Hypericum perforatum (Clusiaceae). Bulletin of Entomological Research, 86: 591597.CrossRefGoogle Scholar
Siew, Y.C. 1966. Some physiological aspects of adult reproductive diapause in Galerca tanaceti (L.) (Coleoptera: Chrysomelidae). Transactions of the Royal Entomological Society of London, 118: 359374.CrossRefGoogle Scholar
Takeda, M. 1998. Genetic basis of photoperiodic control of summer and winter diapause in geographic ecotypes of the rice stem maggot, Chlorops oryzae. Entomologia Experimentalis et Applicata, 86: 5970.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A. 1970. Photoperiodic induction and termination of diapause in an insect: response to changing daylengths. Science (Washington, D.C.), 167: 170.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A. 1976. Insect seasonality: diapause maintenance, termination, and post-diapause development. Annual Review of Entomology, 21: 81107.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A. 1979. Inheritance of photoperiodic responses controlling diapause. Entomological Society of America Bulletin, 25: 125128.CrossRefGoogle Scholar
Tauber, M.J, Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York.Google Scholar
Tauber, M.J., Tauber, C.A., Nyrop, J.P., and Villani, M.G. 1998. Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanisms. Environmental Entomology, 27: 523530.CrossRefGoogle Scholar
Thiele, H.U. 1969. The control of larval hibernation and of adult aestivation in the carabid beetles Nebria brevicollis F., and Patrobus atrorufus Stroem. Oecologia, 2: 347361.CrossRefGoogle Scholar
Topp, W. 2003. Phenotypic plasticity and development of cold season insects (Coleoptera: Leiodidae) and their relative response to climate change. European Journal of Entomology, 100: 233243.CrossRefGoogle Scholar
Wade, J.L., and Rummell, D.R. 1978. Boll weevil immigration into winter habitat and subsequent spring and summer emergence. Journal of Economic Entomology, 7: 173179.CrossRefGoogle Scholar
Ward, J.S., Montgomery, M.E., Cheah, C.A.S.-J., Onken, B.P., and Cowles, R.S. 2004. Eastern hemlock forests: guidelines to minimize the impacts of hemlock woolly adelgid. USDA Forest Service, Northeastern Area State and Private Forestry, Morgantown, West Virginia, NA-TP-03-04.Google Scholar
Xue, F.S., Zhu, X.F., and Shao, Z.Y. 2001. Control of summer and winter diapause in the leaf-mining fly Pegomyia bicolor Wiedemann (Dipt., Anthomiidae). Journal of Applied Entomology, 125: 181187.CrossRefGoogle Scholar
Zhu, D.H., and Tanaka, S. 2004. Summer diapause and nymphal growth in a subtropical cockroach: response to changing photoperiod. Physiological Entomology, 29: 7883.CrossRefGoogle Scholar
Zilahi-Balogh, G.M.G., Kok, L.T., and Salom, S.M. 2002. Host specificity tests of Laricobius nigrinus Fender (Coleoptera: Derodontidae), a biological control agent of the hemlock woolly adelgid, Adelges tsugae (Homoptera: Adelgidae). Biological Control, 24: 192198.CrossRefGoogle Scholar
Zilahi-Balogh, G.M.G., Humble, L.M., Lamb, A.B., Salom, S.M., and Kok, L.T. 2003 a. Seasonal abundance and synchrony between Laricobius nigrinus Fender (Coleoptera: Derodontidae) and its prey, the hemlock woolly adelgid, Adelges tsugae (Homoptera: Adelgidae) in British Columbia. The Canadian Entomologist, 135: 103115.CrossRefGoogle Scholar
Zilahi-Balogh, G.M.G., Salom, S.M., and Kok, L.T. 2003 b. Development and reproductive biology of Laricobius nigrinus, a potential biological control agent of Adelges tsugae. Biocontrol, 48: 293306.CrossRefGoogle Scholar
Zilahi-Balogh, G.M.G., Salom, S.M., and Kok, L.T. 2003 c. Temperature-dependent development of the specialist predator Laricobius nigrinus Fender (Coleoptera: Derodontidae). Environmental Entomology, 32: 13221328.CrossRefGoogle Scholar