Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:48:07.689Z Has data issue: false hasContentIssue false

FACTORS INFLUENCING THE MORTALITY OF SCOLYTUS MULTISTRIATUS (COLEOPTERA: SCOLYTIDAE) IN ELM BRANCHES IN CALIFORNIA1

Published online by Cambridge University Press:  31 May 2012

Ann E. Hajek
Affiliation:
Division of Biological Control, University of California, Berkeley, USA 94720
Donald L. Dahlsten
Affiliation:
Division of Biological Control, University of California, Berkeley, USA 94720

Abstract

Populations of Scolytus multistriatus (Marsham) from two areas of California were sampled in 1979 to investigate various factors influencing mortality. English-elm bolts (Ulmus procera Salisb.) ranging between 2.0 and 12.9 cm in diameter yielded mean mortalities from 49.1 to 86.0%. Mortality was highly correlated with egg density for branch samples from 7.0 to 12.9 cm in diameter. The minimum acceptable elm-branch diameter (2.8 cm) was attacked only during the first sampling period (mid-May to mid-June). Branch diameter, and therefore bark thickness, demonstrated a strong positive relationship with the density of S. multistriatus eggs, attacks, gallery lengths, and emerged adults. Gallery length density was positively correlated with attack density. At low attack densities in small-diameter branches, mean gallery lengths were shorter.

Résumé

Des populations du Scolytus multistriatus (Marsham) de deux localités de Californie ont été échantillonnées en 1979 afin d'en examiner certaines causes de mortalité. Des mortalités moyennes de 49,1 à 86,0 pour cent ont été observées sur les rameaux de l'orme anglais (Ulmus procera Salisb.) ayant un diamètre de 2,0 à 12,9 cm. On a constaté une très forte corrélation entre la mortalité et la densité des oeufs dans les échantillons de rameaux à diamètre compris entre 7,0 et 12,9 cm. Les rameaux à diamètre minimal (2,8 cm) acceptable pour l'oviposition n'ont été attaqués que lors de la première période d'échantillonnage (mi-mai à mi-juin). Le diamètre des rameaux et, donc, l'épaisseur de l'écorce, ont été prouvés avoir un relation positive très forte avec la densité des oeufs, les attaques, les longueurs des galeries et les adultes émergeants. Une corrélation positive existait entre la densité des longueurs des galeries et la densité des attaques. Les longueurs moyennes des galeries étaient plus courtes dans les rameaux à petit diamètre et à attaques de faibles densités.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, H. 1951. Current insect notes. Bull. Calif. Dep. Agric. 40: 111118.Google Scholar
Beaver, R.A. 1966. Notes on the biology of the bark beetles in Wytham Wood, Berks. Ent. Mon. Mag. 102: 156162.Google Scholar
Beaver, R.A. 1967. Notes on the biology of the parasitic mite Pyemotes scolyti Oud. (Acari: Pyemotidae). Entomologist 100: 912.Google Scholar
Beaver, R.A. 1974. Intraspecific competition among bark beetle larvae (Coleoptera: Scolytidae). J. Anim. Ecol. 43: 455467.Google Scholar
Berryman, A.A. 1982. Population dynamics of bark beetles. pp. 264–314 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark beetles in North American conifers. Univ. Texas Press, Austin. 527 pp.Google Scholar
Brown, L.R. 1965. Seasonal development of the smaller European elm bark beetle in Southern California. J. econ. Ent. 58: 176177.CrossRefGoogle Scholar
Burdekin, D.A., and Heybroek, H.M.. 1975. Dutch Elm Disease. Proc. IUFRO Conf., Minneapolis-St. Paul, USA, Sept. 1973. 94 pp.Google Scholar
Cole, W.E. 1962. The effects of intraspecific competition within mountain pine beetle broods under laboratory conditions. Intermountain Forest and Range Experiment Station Res. Note 97. 4 pp.Google Scholar
Dahlsten, D.L. 1982. Relationships between bark beetles and their natural enemies. pp. 140–182 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark beetles in North American conifers. Univ. Texas Press, Austin. 527 pp.Google Scholar
Dixon, W.J. (Ed.). 1981. BMDP statistical software, 1981. University of California Press. 726 pp.Google Scholar
Hajek, A.E., and Dahlsten, D.L.. 1985. Insect and mite associates of Scolytus multistriatus (Coleoptera: Scolytidae) in California. Can. Ent. 117: 000–000.Google Scholar
Hostetler, B.B., and Brewer, J.W.. 1976. Survival of Dendrosoter protuberans, a parasitoid of Scolytus multistriatus, in Colorado. Ann. ent. Soc. Am. 69: 8588.CrossRefGoogle Scholar
Jones, W.W., and Lanier, G.N.. 1977. Termination of larval diapause in the European elm bark beetle. Ann. ent. Soc. Am. 70: 387390.Google Scholar
Koehler, C.S., Svihra, P., Byers, J.A., and Frankie, G.W.. 1979. Behavior of the smaller European elm bark beetle in relation to transmission of the Dutch Elm Disease fungus in California. California Dept. Food and Agric., Final Technical Report, Agreement No. 9552. 11 pp.Google Scholar
McMullen, L.H., and Atkins, M.D.. 1961. Intraspecific competition as a factor in the natural control of the Douglas-fir beetle. Forest Sci. 7: 197203.Google Scholar
Michalski, J. 1960. Ulmenbefall durch splintkafer der Gattung Scolytus Geoffr. (Coleoptera, Scolytidae) in Poznan (Polen). 11th Internat. Congr. Ent., Vienna. pp. 273276.Google Scholar
National Oceanic and Atmospheric Administration. 1979. Climatological Data 83(5–9).Google Scholar
Pool, R.A.F., and Hiatt, P.W.. 1976. Dutch Elm Disease in California. Pl. Dis. Reptr. 60: 166167.Google Scholar
Readio, P.A. 1935. The entomological phases of the Dutch Elm Disease. J. econ. Ent. 23: 341353.CrossRefGoogle Scholar
Schroeder, D. 1974. Untersuchungen ueber die Aussichten einer biologischen Bekaempfung von Scolytiden an Ulmen als Mittel zur Einschraenkung des Ulmensterbens. (Studies on the possibilities of biological control of elm bark beetles (Scolytidae) with a view of reduction of the Dutch Elm Disease. Z. Angew. Ent. 76: 150159. (Abstract in English.)Google Scholar
Steel, R.G.D., and Torrie, J.H.. 1960. Principles and practices in statistics. McGraw-Hill, NY. 481 pp.Google Scholar
Svihra, P., and Koehler, C.S.. 1982. Attack and development of Scolytus multistriatus in small-diameter elm branches. Environ. Ent. 11: 594597.CrossRefGoogle Scholar
Svihra, P., and Volney, W.J.A.. 1983. Effect of English, Siberian, and Chinese elms on the attack behavior and brood survival of Scolytus multistriatus (Coleoptera: Scolytidae). Can. Ent. 115: 513522.CrossRefGoogle Scholar
Truchan, J.G. 1970. Field evaluation of Dendrosoter protuberans as a biological control agent for Scolytus multistriatus, the primary vector of Dutch Elm Disease. Ph.D. Diss., Michigan State Univ. 97 pp.Google Scholar
Wallace, P. 1940. Notes on the smaller European elm bark beetle, Scolytus multistriatus Marsham. Conn. Agric. Exp. Stn. Bull. 434: 293311.Google Scholar
Williams, L.H., and Brown, H.E.. 1969. Some biological investigations of the smaller European elm bark beetle in Missouri with reference to systemic insecticidal control. J. econ. Ent. 62: 13811386.CrossRefGoogle Scholar