Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T17:49:37.417Z Has data issue: false hasContentIssue false

FIELD EVALUATION OF THE PHOTOTOXIN, ALPHA-TERTHIENYL, FOR REDUCING LARVAL POPULATIONS OF BLACK FLIES (DIPTERA: SIMULIIDAE) AND ITS IMPACT ON DRIFT OF AQUATIC INVERTEBRATES

Published online by Cambridge University Press:  31 May 2012

L.M. Dosdall
Affiliation:
Alberta Environmental Centre, Bag 4000, Vegreville, Alberta, Canada T0B 4L0
M.M. Galloway
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
J.T. Arnason
Affiliation:
Institutes of Biology and Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
P. Morand
Affiliation:
Institutes of Biology and Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Abstract

The efficacy of alpha-terthienyl (α-T) for reducing larval populations of black flies was determined in two streams in southeastern Ontario. By 24 h post-treatment, larval black fly population reductions greater than 90% resulted from exposure to calculated dosages of 0.04 and 0.10 mg-L−1 α-T emulsifiable concentrate over distances of 1.0 and 1.5 km, respectively. Significant population reductions were not observed 2.3 km downstream from injection of the 0.10 mg·L−1 dosage, probably because a marshy area upstream from this sampling site slowed the transport and enhanced photodegradation of α-T. Alpha-terthienyl initiated catastrophic drift of benthic invertebrates that was not selective for any functional feeding group. Significant increases in post-treatment drift, relative to pre-treatment densities, were observed downstream from treatment for eight of 10 taxa studied and included filter-feeders, grazers, and predators. Upstream from treatment, significant increases between sampling days were observed for only two taxa. The catastrophic and nonselective impact of α-T on invertebrate drift preclude its usefulness as an alternative to black fly larvicides used currently, although specialized applications for α-T may exist in integrated black fly control programs.

Résumé

L’efficacité d’alpha-terthiényl (α-T) dans la diminution des populations larvaires de mouches noires a été déterminée dans deux ruisseaux au sud-est de l’Ontario. Suivant une période de 24 h après le traitement, des réductions de plus de 90% en populations larvaires de mouches noires ont été constatées aux doses d’émulsifiant concentré d’ α-T, calculées à 0,04 et à 0,10 mg·L−1 à travers les distances de 1,0 et 1,5 km, respectivement. Des diminutions significatives en population n’ont pas été observées à une distance de 2,3 km en aval du site d’infusion de la dose de 0,10 mg·L−1, vraisemblablement à cause qu’une région marécageuse en amont du site d’échantillonnage a ralenti le transport et a augmenté la photodégradation de α-T. Alpha-terthiényl a initié la dérive catastrophique des invertébrés benthiques qui n’a pas été sélective pour aucun groupe alimentaire. Les augmentations significatives à la dérive suivant le traitement, à comparer aux densités avant le traitement, ont été constaté en aval en ce qui concerne huit à 10 taxons étudiés et ont inclus des mangeurs par filtration, des brouteurs et des prédateurs. En amont du traitement, des augmentations significatives n’ont été remarquées parmi les insectes entre les jours d’échantillonnage que dans le cas de deux taxons. L’effet catastrophique et non-sélectif d’ α-T sur la dérive des invertébrés exclut son utilité comme larvicide de rechange des larvicides actuellement utilisés contre les mouches noires, malgré que quelques usages particuliers pourraient se trouver aux programmes de la lutte intégrée contre les mouches noires.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., and Russek, E.. 1985. The quantification of stream drift. Can. J. Fish. Aquat. Sci. 42: 210215.CrossRefGoogle Scholar
Arnason, J.T., Philogène, B.J.R., Duval, F., Berg, C.W., Iyengar, S., and Morand, P.. 1989 a. Efficacy of formulations of the phototoxic insecticide α-terthienyl towards Aedes spp. Bioactive Molecules 7: 305315.Google Scholar
Arnason, J.T., Philogène, B.J.R., Morand, P., Imrie, K., Hasspieler, B., and Downe, A.E.R.. 1989 b. Naturally occurring and synthetic thiophenes as insecticides. Am. Chem. Soc. Symp. Ser. 387: 164172.Google Scholar
Arnason, J.T., Philogène, B.J.R., Morand, P., Scaiano, J.C., Werstiuk, N., and Lam, J.. 1987. Thiophenes and acetylenes: Phototoxic agents to herbivorous and blood-feeding insects. pp. 255264in Heitz, J.R., and Downum, K.B. (Eds.), Light Activated Pesticides. ACS Symposium Series 339.CrossRefGoogle Scholar
Arnason, J.T., Swain, G.F.Q., Wat, C.K., Downum, K., and Towers, G.H.N.. 1981 a. Oxygen requirement of near-UV mediated cytotoxicity of α-terthienyl to Escherichia coli and Saccharomyces cerevisiae. Photochem. Photobiol. 33: 821824.CrossRefGoogle Scholar
Arnason, J.T., Swain, T., Wat, C.K., Graham, E.A., Partington, S., Lam, J., and Towers, G.H.N.. 1981 b. Mosquito larvicides from polyacetylenes occurring naturally in Asteraceae. Biochem. Syst. Ecol. 9: 6368.CrossRefGoogle Scholar
Back, C., Leblanc, A., and Aubin, A.. 1983. Effects sur la dérive des insectes aquatiques d'un traitement au téméphos contre les larves de moustiques dans le Québec subartique. Can. Ent. 115: 703712.CrossRefGoogle Scholar
Borovsky, D., Linley, J.R., and Kagan, J.. 1987. Polycyclic aromatic compounds as phototoxic mosquito larvicides. J. Am. Mosq. Control Assoc. 3: 246250.Google ScholarPubMed
Brittain, J.E., and Eikeland, T.J.. 1988. Invertebrate drift — A review. Hydrobiology 166: 7793.CrossRefGoogle Scholar
Burton, W., and Flannagan, J.F.. 1976. An improved river drift sampler. Can. Fish. Mar. Serv. Res. Dev. Tech. Rep. 641. 8 pp.Google Scholar
Corrarino, C.A., and Brusven, M.A.. 1983. The effects of reduced stream discharge on insect drift and stranding on near shore insects. Freshwat. Invert. Biol. 5: 8898.CrossRefGoogle Scholar
Currie, D.C. 1986. An annotated list of and keys to the immature black flies of Alberta (Diptera: Simuliidae). Mem. ent. Soc. Can. 134. 90 pp.Google Scholar
Dosdall, L.M., and Lehmkuhl, D.M.. 1989. Drift of aquatic insects following methoxychlor treatment of the Saskatchewan River system. Can. Ent. 121: 10771096.CrossRefGoogle Scholar
Eidt, D.C., and Weaver, C.A.A.. 1983. Threshold concentration of aminocarb that causes drift of stream insects. Can. Ent. 115: 715716.CrossRefGoogle Scholar
Eidt, D.C., and Weaver, C.A.A.. 1984. Influence of site and fenitrothion contamination on vertical distribution of drift of arthropods in a woodland stream. Can. Ent. 116: 14251430.CrossRefGoogle Scholar
Elliott, J.M. 1970. Methods of sampling invertebrate drift in running waters. Ann. Limnol. 6: 133159.CrossRefGoogle Scholar
Flannagan, J.F., Townsend, B.E., DeMarch, B.G.E., Friesen, M.K., and Leonhard, S.H.. 1979. The effects of an experimental injection of methoxychlor on aquatic invertebrates: Accumulation, standing crop, and drift. Can. Ent. 111: 7389.CrossRefGoogle Scholar
Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley and Sons, New York, NY.Google Scholar
Hasspieler, B.M., Arnason, J.T., and Downe, A.E.R.. 1988. Toxicity, toxicokinetics and localization of the phototoxin alpha-terthienyl in mosquito larvae. J. Am. Mosq. Control Assoc. 4: 7984.Google Scholar
Hasspieler, B.M., Arnason, J.T., and Downe, A.E.R.. 1990. Modes of action of the plant derived phototoxin, alpha-terthienyl, in mosquito larvae. Pesticide Biochem. Physiol. 38: 4147.CrossRefGoogle Scholar
Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187211.CrossRefGoogle Scholar
Kagan, J., Beny, J.-P., Chan, G., Dhawan, S.N., Jaworski, J.A., Kagan, E.D., Kassner, P.D., Murphy, M., and Rogers, J.A.. 1983. The phototoxicity of some 1.3-butadienes and related thiophenes against larvae of the mosquito Aedes aegypti and of the fruit fly Drosophila melanogaster. Insect Sci. Appl. 4: 377381.Google Scholar
Kagan, J., Kagan, E.D., Patel, S., Perrine, D., and Bindokas, V.. 1987. The phototoxicity of alpha-terthienyl in eggs, larvae and pupae of the mosquito Aedes aegypti. J. Chem. Ecol. 13: 593604.CrossRefGoogle Scholar
Larson, R.A., and Berenbaum, M.R.. 1988. Environmental phototoxicity. Environ. Sci. Technol. 22: 354360.CrossRefGoogle Scholar
Mayer, F.L. Jr, and Ellersieck, M.R.. 1986. Manual of aquatic toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. U.S. Dept. Interior, Fish Wildl. Serv. Res. Publ. 160. 506 pp.Google Scholar
Minshall, G.W., and Winger, P.V.. 1968. The effect of reduction in stream flow on invertebrate drift. Ecology 49: 580582.CrossRefGoogle Scholar
Philogène, B.J.R., Amason, J.T., Berg, C.W., Duval, F., Champagne, D., Taylor, R.G., Leitch, L.C., and Morand, P.. 1985. Synthesis and evaluation of the naturally occurring phototoxin, alpha-terthienyl, as a control agent for larvae of Aedes intrudens, Aedes atropalpus (Diptera: Culicidae) and Simulium verecundum (Diptera: Simuliidae). J. econ. Ent. 78: 121126.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC.Google Scholar
Sebastien, R.J., Brust, R.A., and Rosenberg, D.M.. 1989. Impact of methoxychlor on selected nontarget organisms in a riffle of the Souris River, Manitoba. Can. J. Fish. Aquat. Sci. 46: 10471061.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. W.H. Freeman and Co., San Francisco, CA.Google Scholar
Wallace, R.R., and Hynes, H.B.N.. 1975. The catastrophic drift of stream insects after treatment with methoxychlor (1,1,1-trichloro-2, 2-bis (p-methoxyphenyl) ethane). Environ. Pollut. 8: 255268.CrossRefGoogle Scholar
Wallace, R.R., Merritt, W.F., and West, A.S.. 1973. Dispersion and transport of Rhodamine B dye and methoxychlor in running water: A preliminary study. Environ. Pollut. 5: 1118.CrossRefGoogle Scholar
Wat, C.K., MacRae, W.D., Yamamoto, E., Towers, G.H.N., and Lam, J.. 1980. Phototoxic effects of naturally occurring polyacetylenes and α-terthienyl on human erythrocytes. Photochem. Photobiol. 32: 167172.CrossRefGoogle ScholarPubMed
Waters, T.F. 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327334.CrossRefGoogle Scholar
Waters, T.F. 1972. The drift of stream insects. A. Rev. Ent. 17: 253272.CrossRefGoogle Scholar