Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T17:45:11.211Z Has data issue: false hasContentIssue false

FIELD TESTS OF ISOMERS OF LINEATIN, THE AGGREGATION PHEROMONE OF TRYPODENDRON LINEATUM (COLEOPTERA: SCOLYTIDAE)1

Published online by Cambridge University Press:  31 May 2012

Extract

The aggregation pheromone of the ambrosia beetle, Trypodendron lineatum (Olivier), was isolated by MacConnell et al. (1977), identified as one of two isomeric, tricyclic acetals, and given the trivial name, lineatin. One of the isomers, 3,3,7-trimethyl-2,9-dioxatricyclo [3.3.1.0 4,7] nonane (4,6,6-lineatin), was synthesized in µg quantities by three different syntheses, assessed to be structurally identical to the isolated pheromone, and demonstrated to be highly attractive in field tests (Borden et al. 1979; Vité and Bakke 1979). The other structural isomer, 3,3,7- trimethyl-2,9-dioxatricyclo [4.2.1.0 4,7] nonane (4,5,6-lineatin), was not tested for biological activity. The enantiomeric composition of natural lineatin was not determined by MacConnell et al. (1977).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borden, J. H., Chong, L., McLean, J. A., Slessor, K. N., and Mori, K.. 1976. Gnathotrichus sulcatus: synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894896.CrossRefGoogle ScholarPubMed
Borden, J. H., Handley, J. R., Johnston, B. D., MacConnell, J. G., Silverstein, R. M., Slessor, K. N., Swigar, A. A., and Wong, D. T. W.. 1979. Synthesis and field testing of 4,6,6-lineatin, the aggregation pheromone of Trypodendron lineatum (Coleoptera: Scolytidae). J. Chem. Ecol. 5: 681689.CrossRefGoogle Scholar
Borden, J. H., Handley, J. R., McLean, J. A., Silverstein, R. M., Chong, L., Slessor, K. N., Johnston, B. D., and Schuler, H. R.. Enantiomer-based specificity in pheromone communication by two sympatric Gnathotrichus species. J. Chem. Ecol. (in press).Google Scholar
MacConnell, J. G., Borden, J. H., Silverstein, R. M., and Stokkink, E.. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass of Trypodendron lineatum (Coleoptera: Scolytidae). J. Chem. Ecol. 5: 549561.CrossRefGoogle Scholar
Pirkle, W. H. and Hoekstra, M. S.. 1974. An example of automated liquid chromatography. Synthesis of a broad-spectrum resolving agent and resolution of 1-(1-Naphthyl)-2,2,2-trifluoroethanol. J. Org. Chem. 39: 39043906.CrossRefGoogle Scholar
Tumlinson, J. H., Glein, M. G., Doolittle, R. E., Ladd, T. L., and Proveaux, A. T.. 1977. Identification of the female Japanese beetle sex pheromone: inhibition of male response by an entaniomer. Science 197: 789792.CrossRefGoogle Scholar
Vité, J. P. and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar
Wood, D. L., Browne, L. E., Ewing, B., Lindahl, K., Bedard, W. D., Tilden, P. E., Mori, K., Pitman, G. B., and Hughes, P. R.. 1976. Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone. Science 192: 896898.CrossRefGoogle ScholarPubMed