Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:44:53.800Z Has data issue: false hasContentIssue false

First cytogenetic characterisation of the parasitoid wasp Brachymeria (Pseudobrachymeria) vesparum (Hymenoptera: Chalcididae)

Published online by Cambridge University Press:  06 January 2025

Rafael de Jesus Santos
Affiliation:
Departamento de Ciências Biológicas, Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
Tailan Silva Pinheiro
Affiliation:
Departamento de Ciências Biológicas, Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
Jamille de Araújo Bitencourt
Affiliation:
Departamento de Ciências Biológicas, Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
Vanderly Andrade-Souza*
Affiliation:
Departamento de Ciências Biológicas, Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
Juvenal Cordeiro Silva Junior
Affiliation:
Departamento de Ciências Biológicas, Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
*
Corresponding author: Vanderly Andrade-Souza; Email: vanderlyasouza@outlook.com

Abstract

Cytogenetic analyses have been widely used to understand evolutionary processes and to resolve taxonomic uncertainties in insects. In particular, the mapping of specific chromosomal regions can provide insights about the genome organisation and interspecific relationships. Considering the importance of this approach and the scarcity of chromosomal data in some groups of Hymenoptera, this study provides the first cytogenetic characterisation of the parasitoid wasp, Brachymeria (Pseudobrachymeria) vesparum Bouček, 1992 (Hymenoptera: Chalcididae). This species was characterised by 2n = 10 metacentric chromosomes. The heterochromatin was located at pericentromeric and terminal regions, being particularly conspicuous due to occupying a large part of chromosomes from pair 2. In addition, guanine–cytosine-rich blocks (GC+) were detected in the interstitial region of two chromosomal pairs. The data obtained were found to be useful for inferring the chromosomal rearrangements involved in speciation within Brachymeria, in addition to providing cytotaxonomic markers for further comparative cytogenetic studies.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Chris Keeling

References

Amalin, D.M., Rueda, L.M., and Barrion, A.A. 1988. Cytology of a parasitic wasp, Dirhinus himalayanus Westwood (Chalcididae: Hymenoptera). Philippine Entomologist (Philippines), 7: 272274.Google Scholar
Baldanza, F., Gaudio, L., and Viggiani, G. 1999. Cytotaxonomic studies of Encarsia Förster (Hymenoptera: Aphelinidae). Bulletin of Entomological Research, 89: 209215. https://doi.org/10.1017/S0007485399000322.CrossRefGoogle Scholar
Barros, L.A., de Aguiar, H.J., Mariano, C.S., Andrade-Souza, V., Costa, M.A., Delabie, J.H., and Pompolo, S.G. 2016. Cytogenetic data on six leafcutter ants of the genus Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae, Myrmicinae): insights into chromosome evolution and taxonomic implications. Comparative Cytogenetics, 11: 229243. https://doi.org/10.3897/CompCytogen.v10i2.7612.CrossRefGoogle Scholar
Bitencourt, J.A., Affonso, P.R.A.M., Giuliano-Caetano, L., and Dias, A.L. 2011. Heterochromatin heterogeneity in Hypostomus propeunae (Steindachner, 1878) (Siluriformes, Loricariidae) from northeastern Brazil. Comparative Cytogenetics, 5: 329344. https://doi.org/10.3897/compcytogen.v5i4.1149.Google ScholarPubMed
Bitencourt, J.A., Sampaio, I., Ramos, R.T.C., and Affonso, P.R.A.M. 2014. Chromosomal fusion in Brazilian populations of Trinectes inscriptus Gosse, 1851 (Pleuronectiformes; Achiridae), as revealed by internal telomere sequences (ITS). Journal of Experimental Marine Biology and Ecology, 452: 101104. https://doi.org/10.1016/j.jembe.2013.12.012.CrossRefGoogle Scholar
Bolsheva, N., Gokhman, V., Muravenko, O., Gumovsky, A., and Zelenin, A. 2012. Comparative cytogenetic study on two species of the genus Entedon Dalman, 1820 (Hymenoptera, Eulophidae) using DNA-binding fluorochromes and molecular and immunofluorescent markers. Comparative Cytogenetics, 6: 7992. https://doi.org/10.3897/compcytogen.v6i1.2349.Google Scholar
Brito, R.M., Pompolo, S.G., Magalhães, M.F.M., Barros, E.G., and Sakamoto-hojo, E.T. 2005. Cytogenetic characterization of two Partamona species (Hymenoptera, Apinae, Meliponini) by fluorochrome staining and localization of 18S rDNA clusters by FISH. Cytologia, 70: 373380. https://doi.org/10.1508/cytologia.70.373.CrossRefGoogle Scholar
Carvalho, A.F. and Costa, M.A. 2011. Cytogenetic characterization of two species of Frieseomelitta Ihering, 1912 (Hymenoptera, Apidae, Meliponini). Genetics and Molecular Biology, 34: 237239. https://doi.org/10.1590/s1415-47572011005000010.CrossRefGoogle Scholar
Cristiano, M.P., Simões, T.G., Lopes, D.M., and Pompolo, S.G. 2014. Cytogenetics of Melitoma segmentaria (Fabricius, 1804) (Hymenoptera, Apidae) reveal differences in the characteristics of heterochromatin in bees. Comparative Cytogenetics, 8: 223231. https://doi.org/10.3897/compcytogen.v8i3.7510.CrossRefGoogle ScholarPubMed
Diniz, D. and Xavier, P.M. 2006. Easy Idio. Available from http://geocities.yahoo.com.br/easyidio/ [accessed 12 October 2012].Google Scholar
Feder, J.L., Gejji, R., Powell, T.H.Q., and Nosil, P. 2011. Adaptive chromosomal divergence driven by mixed geographic mode of evolution. Evolution, 65, 21572170.CrossRefGoogle ScholarPubMed
Gebiola, M., Giorgini, M., Navone, P., and Bernardo, U. 2012. A karyological study of the genus Pnigalio Schrank (Hymenoptera: Eulophidae): assessing the taxonomic utility of chromosomes at the species level. Bulletin of Entomological Research, 102: 4350. https://doi.org/10.1017/s0007485311000356.CrossRefGoogle ScholarPubMed
Gokhman, V.E. 2004. Karyotype evolution in parasitic Hymenoptera. Entomological Review, 84: S161S169.Google Scholar
Gokhman, V.E. 2005. New chromosome records for the superfamily Chalcidoidea (Hymenoptera). Cytologia, 70: 239241. https://doi.org/10.1508/cytologia.70.239.CrossRefGoogle Scholar
Gokhman, V.E. 2009. Karyotypes of Parasitic Hymenoptera. Springer Dordrecht, The Netherlands.CrossRefGoogle Scholar
Gokhman, V.E. 2010. Chromosomes of parasitic wasps of the genus Metaphycus (Hymenoptera: Chalcidoidea: Encyrtidae). Comparative Cytogenetics, 4: 2125. https://doi.org/10.3897/compcytogen.v4i1.29.CrossRefGoogle Scholar
Gokhman, V.E. 2013. Parallel pathways of karyotype evolution in the superfamily Chalcidoidea (Hymenoptera). Russian Entomological Journal, 22: 177179.Google Scholar
Gokhman, V.E. 2020. Chromosomes of parasitic wasps of the superfamily Chalcidoidea (Hymenoptera): an overview. Comparative Cytogenetics, 14: 399416. https://doi.org/10.3897/CompCytogen.v14i3.56535.CrossRefGoogle ScholarPubMed
Gokhman, V.E. 2021. Chromosomes of three gall wasps of the tribe Aylacini (Hymenoptera, Cynipidae). Comparative Cytogenetics, 15: 171178. https://doi.org/10.3897/compcytogen.v15.i2.66781.CrossRefGoogle ScholarPubMed
Gokhman, V.E. 2022. Comparative karyotype analysis of parasitoid Hymenoptera (Insecta): major approaches, techniques, and results. Genes, 13: 751.CrossRefGoogle ScholarPubMed
Gokhman, V.E., Bolsheva, N.L., Govind, S., and Muravenko, O.V. 2016. A comparative cytogenetic study of Drosophila parasitoids (Hymenoptera, Figitidae) using DNA–binding fluorochromes and FISH with 45S rDNA probe. Genetica, 144: 335339. https://doi.org/10.1007/s10709-016-9902-5.CrossRefGoogle ScholarPubMed
Gokhman, V.E., Nugnes, F., and Bernardo, U.A. 2019. Cytogenetic study of Baryscapus silvestrii Viggiani and Bernardo, 2007 (Hymenoptera: Eulophidae) using base-specific fluorochrome staining. Russian Entomological Journal, 28: 180182. https://doi.org/10.15298/rusentj.28.2.10.CrossRefGoogle Scholar
Gokhman, V.E., Pereira, F.F., and Costa, M.A. 2017. A cytogenetic study of three parasitic wasp species (Hymenoptera, Chalcidoidea, Eulophidae, Trichogrammatidae) from Brazil using chromosome morphometrics and base-specific fluorochrome staining. Comparative Cytogenetics 11: 179188. https://doi.org/10.3897/CompCytogen.v11i1.11706.CrossRefGoogle ScholarPubMed
Gokhman, V.E. and Westendorff, M. 2000. The chromosomes of three species of the Nasonia complex (Hymenoptera, Pteromalidae). Beiträge Zur Entomologie, 50: 193198. https://doi.org/10.21248/contrib.entomol.50.1.193-198.CrossRefGoogle Scholar
Guerra, M. and Souza, M.J. 2002. Como Observar Cromossomos [How to Observe Chromosomes]. FUNPEC, Ribeirão Preto, São Paulo.Google Scholar
Huber, J.T. 2017. Biodiversity of Hymenoptera. In Insect Biodiversity: Science and Society. Edited by Foottit, R.G. and Adler, P.H.. Wiley Blackwell, Oxford, United Kingdom. Pp. 419461.CrossRefGoogle Scholar
Hung, A.C.F. 1986. Chromosomes of three Brachymeria species (Hymenoptera: Chalcididae). Experientia, 42: 579580.CrossRefGoogle Scholar
Imai, H.T., Taylor, R.W., Crosland, M.W.J., and Crozier, R.H. 1988. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Japanese Journal of Genetics, 63: 159185. https://doi.org/10.1266/jjg.63.159.Google Scholar
Johnson, J.A., Grissell, E.E., Gokhman, V.E., and Valero, K. 2001. Description, biology and karyotype of a new Psilochalcis Kieffer (Hymenoptera: Chalcididae) from Indianmeal moth pupae (Lepidoptera: Pyralidae) associated with culled figs. Proceedings of the Entomological Society of Washington, 103: 777787.Google Scholar
King, M. 1993. Species Evolution: The Role of Chromosome Change. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
König, C., Paschke, S., Pollmann, M., Reinisch, R., Gantert, C., Weber, J., et al. 2019. Molecular and cytogenetic differentiation within the Lariophagus distinguendus (Förster, 1841) species complex (Hymenoptera, Pteromalidae). Comparative cytogenetics, 13: 133145. https://doi.org/10.3897/CompCytogen.v13i2.34492.CrossRefGoogle ScholarPubMed
Levan, A., Fredga, K., and Sandberg, A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52: 201220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x.CrossRefGoogle Scholar
Livingstone, K. and Rieseberg, L. 2003. Chromosomal evolution and speciation: a recombination-based approach. New Phytologist, 161: 107112. https://doi.org/10.1046/j.1469-8137.2003.00942.x.CrossRefGoogle Scholar
Lorite, P., Garcia, M.F., Carrillo, J.A., and Palomeque, T. 1999. Restriction endonuclease chromosome banding in Tapinoma nigerrimum (Hymenoptera, Formicidae). Hereditas, 131: 197201. https://doi.org/10.1111/j.1601-5223.1999.00197.x.CrossRefGoogle Scholar
Lorite, P. and Palomeque, T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecological News, 13: 89102. https://doi.org/10.25849/myrmecol.news_013:089.Google Scholar
Menezes, R.S.T., Carvalho, A.F., Correia, J.P.S.O., Silva, T.S., Somavilla, A., and Costa, M.A. 2014. Evolutionary trends in the chromosome numbers of swarm-founding social wasps. Insectes Sociaux, 61: 385393. https://doi.org/10.1007/s00040-014-0365-3.CrossRefGoogle Scholar
Menezes, R.S.T., Silva, T.M., Carvalho, A.F., Andrade-Souza, V., Silva, J.G., and Costa, M.A. 2013. Numerical and structural chromosome variation in the swarm-founding wasp, Metapolybia decorata Gribodo, 1896 (Hymenoptera, Vespidae). Genetica, 141: 273280. https://doi.org/10.1007/s10709-013-9726-5.CrossRefGoogle ScholarPubMed
Miao, Y., Wang, J.S., and Hua, B.Z. 2018. Molecular phylogeny of the scorpionflies Panorpidae (Insecta: Mecoptera) and chromosomal evolution. Cladistics, 35: 385400. https://doi.org/10.1111/cla.12357.CrossRefGoogle ScholarPubMed
Pompolo, S.G. and Takahashi, C.S. 1990. Chromosome numbers and C-banding in two wasp species of the genus Polistes (Hymenoptera, Polistine, Polistini). Insectes Sociaux, 37: 251257. https://doi.org/10.1007/bf02224052.CrossRefGoogle Scholar
Potter, S., Bragg, J.G., Blom, M.P.K., Deakin, J.E., Kirkpatrick, M., Eldridge, M.D.B., and Moritz, C. 2017. Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Frontiers in Genetics, 8: 118. https://doi.org/10.3389/fgene.2017.00010.CrossRefGoogle ScholarPubMed
Schmid, M. 1980. Chromosome banding in Amphibia. Chromossoma, 77: 83103.CrossRefGoogle ScholarPubMed
Schubert, I. 2007. Chromosome evolution. Current Opinion in Plant Biology, 10: 109115. https://doi.org/10.1016/j.pbi.2007.01.001.CrossRefGoogle ScholarPubMed
Schweizer, D. 1980. Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA–DAPI bands) in human chromosomes. Cytogenetic and Genome Research, 27: 190193. https://doi.org/10.1159/000131482.CrossRefGoogle ScholarPubMed
Siqueira, S., Aguiar, O.J.R., Strüssmann, C., Del-Grande, M.L., and Recco-Pimentel, S.M. 2008. Chromosomal analysis of three Brazilian “eleutherodactyline” frogs (Anura: Terrarana), with suggestion of a new species. Zootaxa, 1: 5159. https://doi.org/10.11646/zootaxa.1860.1.4.Google Scholar
Sumner, A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75: 304306. https://doi.org/10.1016/0014-4827(72)90558-7.CrossRefGoogle ScholarPubMed
Tavares, M.G., Ferreira, R.D., Travenzoli, N.M., and Lopes, D.M. 2021. Karyotypic variation in the stingless bee Trigona spinipes (Hymenoptera: Apidae: Meliponini) from different geographical regions of Brazil. Apidologie, 52: 13581367. https://doi.org/10.1007/s13592-021-00906-1.CrossRefGoogle Scholar
Tavares, M.G. and Teixeira, G.A. 2021. Comparative cytogenetic analysis of three Eumeninae species (Hymenoptera, Vespidae). Cytogenetic and Genome Research, 161: 203212. https://doi.org/10.1159/000515082.CrossRefGoogle ScholarPubMed
Tavares, M.T. and Araújo, B.C. 2007. Espécies de Chalcididae (Hymenoptera, Insecta) do Estado do Espírito Santo, Brasil [Species of Chalcididae (Hymenoptera, Insecta) from the State of Espírito Santo, Brasil]. Biota Neotropica, 7: 2. https://doi.org/10.1590/S1676-06032007000200024.CrossRefGoogle Scholar
Universal Chalcidoidea Database Community. 2023. Universal Chalcidoidea Database. https://ucd.chalcid.org [accessed 1 September 2024].Google Scholar
van Vugt, J.J.F.A., Jong, H., and Stouthamer, R. 2009. The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai . Proceedings of Biological Sciences, 276: 41494154. https://doi.org/10.1098/rspb.2009.1238.Google ScholarPubMed
van Vugt, J.J.F.A., Nooijer, S., Stouthamer, R., and Jong, H. 2005. NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai . Chromosoma, 114: 410419. https://doi.org/10.1007/s00412-005-0026-4.CrossRefGoogle ScholarPubMed