Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:01:13.927Z Has data issue: false hasContentIssue false

FLAGGING: HOSTS DEFENCES VERSUS OVIPOSITION STRATEGIES IN PERIODICAL CICADAS (MAGICICADA SPP., CICADIDAE, HOMOPTERA)

Published online by Cambridge University Press:  31 May 2012

JoAnn White
Affiliation:
Department of Zoology, University of North Carolina, Chapel Hill, North Carolina 27514

Abstract

Dissections of eggnests of brood XIV, 17-year periodical cicadas (Magicicada spp.) confirmed earlier reports that most eggs do not hatch when the host twig is so damaged that it withers, breaks and dies, i.e., “flags”. However, the proportion of eggs hatching in experimentally broken twigs is intermediate between the proportions hatching in flagged twigs and in live twigs. Evidently, the developmental stage of the egg at the time of twig breakage is the major factor reducing hatching success.

Some of the vigorously growing branches respond to oviposition damage by secreting resin or forming callous tissue, which imprisons many eggs, preventing them from hatching. The data suggest that ovipositing cicadas have developed an oviposition strategy that both maximizes the number and percentage hatch of eggs laid per twig, and reduces the incidence of flagging and host defence responses. Large aggregations of ovipositing females may weaken the host plant and prevent it from responding. On the other hand these aggregations increase twig breakage. However, the proportion of twigs broken is reduced by each cicada species using somewhat different twig sizes, by the smaller species adjusting eggnest structure to fit the twig size used, and by all females positioning their eggnests along the twig in such a way as to avoid overlap.

Résumé

La dissection de nids d’oeufs de cigales 17-ans (Magicicada spp.) a confirmé des observations antérieures voulant que la plupart des oeufs n’éclosent pas lorsque la branche réceptrice est tellement endommagée qu’elle se déssèche, casse et meurt. Cependant la proportion des oeufs éclosant sur des branches cassées expérimentalement est intermédiaire entre celle de tiges naturellement cassées, et celle de tiges vivantes. De toute évidence, le stade de développement de l’oeuf au moment où la tige casse est le principal facteur de réduction de l’éclosion.

Certaines branches croissant vigoureusement réagissent aux blessures de ponte en sécrétant de la résine ou en formant du tissu calleux qui confine les oeufs et les empêche d’éclore. Les données indiquent que les cigales ont développé une stratégie d’oviposition qui à la fois, maximise le nombre et le pourcentage des oeufs pondus sur une tige qui écloront, et réduit l’incidence de cassage et de réactions défensives de l’hôte. La ponte massive par un assemblage de femelles peut affaiblir la plante-hôte et empêcher la réaction. Par ailleurs, ces assemblages augmentent le cassage des branches. Cependant l’incidence du cassage est réduite dû aux faits que chaque espèce de cigale choisit des tiges de grosseurs quelque peu différente, que les plus petites espèces ajustent la structure des nids d’oeufs à la grosseur de tige utilisée, et que toutes les femelles placent leurs nids le long de la tige de façon à éviter le chevauchement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. D. and Moore, T. E.. 1962. The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera, Cicadidae, Magicicada). Misc. Publ. Mus. Zool. Univ. Mich. 121. 59 pp.Google Scholar
Amman, G. D. 1977. The role of the mountain pine beetle in lodgepole pine ecosystems: impact on succession. pp. 3–18. In Mattson, W. J. (Ed.), The Role of Arthropods in Forest Ecosystems. Chap. 1. Springer-Verlag, 104 pp. New York.Google Scholar
Banta, E. S. 1960. Apple orchard decline. Proc. Ohio State Hort. Soc., 113th Annual Meeting, pp. 8890.Google Scholar
Dybas, H. S. and Lloyd, M.. 1974. The habitats of 17-year periodical cicadas (Homoptera: Cicadidae: Magicicada spp.). Ecol. Monogr. 44: 279324.CrossRefGoogle Scholar
Fisher, R. A. 1954. Statistical methods for research workers, 12th ed. Oliver & Boyd, London. 356 pp.Google Scholar
Graham, C. and Cochran, A. B.. 1954. The periodical cicada in Maryland in 1953. J. econ. Ent. 47: 242244.CrossRefGoogle Scholar
Hamilton, D. W. 1961. Periodical cicadas, Magicicada spp., as pests in apple orchards. Proc. Indiana Acad. Sci. 71: 116121.Google Scholar
Hamilton, D. W. and Cleveland, M. L.. 1964. Periodical cicadas in 1963, brood 23. Proc. Indiana Acad. Sci. 72: 167170.Google Scholar
Harris, P. 1960 a. Production of pine resin and its effects on survival of Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae). Can. J. Zool. 38: 121130.CrossRefGoogle Scholar
Harris, P. 1960 b. Natural mortality of the pine shoot moth, Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae) in England. Can. J. Zool. 38: 755768.CrossRefGoogle Scholar
Hunter, P. E. and Lund, H. O.. 1960. Biology of the periodical cicada in Georgia. J. econ. Ent. 53: 961963.CrossRefGoogle Scholar
Hyslop, J. A. 1935. The periodical cicada. U.S. Dep. Agric. Bur. Ent. & Plant Quarantine, mimeo rep. E-364. 17 pp.Google Scholar
Lloyd, M. and Dybas, H. S.. 1966. The periodical cicada problem. I. Population ecology. II. Evolution. Evolution 20: 133–149, 466505.CrossRefGoogle Scholar
Lloyd, M. and White, J.. 1976. Sympatry of periodical cicada broods and the hypothetical 4-year acceleration. Evolution 30: 786801.Google Scholar
Lloyd, M. and White, J.. 1980. On reconciling patchy microspatial distributions with competition models. Am. Nat. 115: 2944.CrossRefGoogle Scholar
Marlatt, C. L. 1907. The periodical cicada. Bull. U.S. Dep. Agric. Bur. Ent. 71. 181 pp.Google Scholar
Reid, R. W., Whitney, H. S., and Watson, J. A.. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 11151126.CrossRefGoogle Scholar
Riley, C. V. 1885. The periodical cicada. An account of Cicada septendecim and its tredecim race, with a chronology of all broods known. Bull. U.S. Dep. Agric. Div. Ent. (o.s.) 8. 46 pp.Google Scholar
Siegel, S. 1956. Nonparametric statistics for the behavioral sciences. McGraw Hill, N.Y.312 pp.Google Scholar
Simon, C. M. 1979. Evolution of periodical cicadas: phylogenetic inferences based on allozymic data. Syst. Zool. 28: 2239.CrossRefGoogle Scholar
Simon, C. M., Karban, R., and Lloyd, M.. Patchiness, density, and aggregative behavior in sympatric allochronic populations of 17-year cicadas. Ecology, in press.Google Scholar
Smith, F. F. and Linderman, R. G.. 1974. Damage to ornamental trees and shrubs resulting from oviposition by periodical cicadas. Environ. Ent. 3: 725732.CrossRefGoogle Scholar
Snodgrass, R. E. 1921. The seventeen-year locust. Smithson. Rep. for 1919: 381409.Google Scholar
White, J. 1973. Viable hybrid young from crossmated periodical cicadas. Ecology 54: 573580.CrossRefGoogle Scholar
White, J. 1980. Resource partitioning in ovipositing periodical cicadas. Am. Nat. 115: 128.CrossRefGoogle Scholar
White, J. and Lloyd, M.. 1975. Growth rates of 17-year and 13-year periodical cicadas. Am. Midl. Nat. 94: 127143.CrossRefGoogle Scholar
White, J. and Lloyd, M.. 1975. On the stainability and mortality of periodical cicada eggs. Am. Midl. Nat., in press.Google Scholar