Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T17:45:58.008Z Has data issue: false hasContentIssue false

THE FORMATION OF COMPOUND EGG CHAMBERS IN A BUG (HEMIPTERA) STERILIZED WITH 6-AZAURIDINE

Published online by Cambridge University Press:  31 May 2012

Petr Masner
Affiliation:
Department of Developmental Morphology, Institute of Entomology, Czechoslovak Academy of Sciences, Prague
Vladimir Landa
Affiliation:
Department of Developmental Morphology, Institute of Entomology, Czechoslovak Academy of Sciences, Prague

Abstract

Ovaries are one of the target organs hit by the nucleic acid antimetabolite 6-azauridine. All the malformations observed are caused by the suppression of mitotic activity, which appears to be the most sensitive to the applied drug. The inhibition of mitosis in the apical trophocytes results in depletion of the nutritive tissue in older females, followed by a disturbance of previtellogenesis and activation of oocytes. The blocked mitotic multiplication of prefollicular tissue results in exhaustion of this layer followed by a disturbance of regular egg chamber formation. The inadequate separation of oocytes by follicular cells causes the arrangement of the oocytes in paired chambers, often blocking the ovariole, or the formation of compound chambers. The oocytes sharing the compound chamber either remain separated by the ooplasmalemma or merge. Eggs with adherent dwarf oocytes or giant fused double eggs are oviposited. Endomitotic DNA replication and amitotic karyokinesis of the follicular cells are not interfered with by 6-azauridine, probably owing to the nucleic acid pools contained in the haemolymph. The lecytholitic cells resorb the ooplasm utilizing the nucleic acid-rich material.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beatty, R. A. 1949. Studies on reproduction in wild-type and female sterile mutants of Drosophila melanogaster. Proc. R. Soc. Edinb. 63: 249270.Google Scholar
Bender, H. A. and Green, M. M.. 1962. Phenogenetics of the Lozenge loci in Drosophila melanogaster Meigen. III: Genetically induced pathogenesis of the ovary. J. Insect Pathol. 4: 371380.Google Scholar
Bier, K. 1963 a. Synthese, interzellulärer Transport, und Abbau von Ribonukleinsäure im Ovar der Stubenfliege Musca domestica. J. Cell Biol. 16: 436440.CrossRefGoogle Scholar
Bier, K. 1963 b. Autoradiographische Untersuchungen über die Leistungen des Follikelepithels und der Nährzellen bei der Dotterbildung und Eiweissynthese im Fliegenovar. Arch. EntwMech. Org. 154: 552575.CrossRefGoogle Scholar
Bier, K. 1964. Die Kern-Plasma-Relation und das Riesenwachstum der Eizellen. Zool. Anz. 27 (Suppl.): 8491.Google Scholar
Bonhag, P. F. 1955. Histochemical studies of the ovarian nurse tissues and oocytes of the milkweed bug, Oncopeltus fasciatus (Dallas). I: Cytology, nucleic acids and carbohydrates. J. exp. Zool. 96: 381440.Google Scholar
Brown, E. H. and King, R. C.. 1964. Studies on the events resulting in the formation of an egg chamber in Drosophila melanogaster. Growth 28: 4181.Google ScholarPubMed
Crystal, M. M. 1963. The induction of sexual sterility in the screw-worn fly by anti-metabolites and alkylating agents. J. econ. Ent. 56(4): 468473.CrossRefGoogle Scholar
David, J. 1964. Influence d'un inhibiteur de l'acide folique sur l'ovogenèse de la Drosophile. I: Étude de la fecondité, du pourcentage d'éclosion et de la taille des oeufs. J. Insect Physiol. 10: 805817.CrossRefGoogle Scholar
David, J. 1966 a. Influence d'un antagoniste de l'acide folique sur l'ovogenèse de la Drosophile. II. Étude des anomalies du fonctionnement ovarien en relation avec la dose et la durée d'action du toxique. Arch. Sci. physiol. 20(3): 281302.Google Scholar
David, J. 1966 b. Role physiologique de l'acide folique chez la Drosophile étudié au moyen d'un antagoniste spécifique. Annls Nutr. Alim. 20(4): 339347.Google Scholar
Gill, K. S. 1963. Developmental genetic studies on oogenesis in Drosophila melanogaster. J. exp. Zool. 152: 251273CrossRefGoogle Scholar
Gloor, H. and Hadorn, E.. 1942. Vergleich der Schädigungen im Ovar von Drosophila melanogaster, bewirkt durch einen Letalfaktor und ein Sterilitätsgen. Arch. Julius Klaus-Stift. Vererb.-Forsch. 17: 438440.Google Scholar
King, R. C. 1957 a. The cytology of the irradiated ovary of Drosophila melanogaster. Exp. Cell. Res. 13: 545552.CrossRefGoogle ScholarPubMed
King, R. C. 1957 b. Oogenesis in adult Drosophila melanogaster. III: Radiation-induced ovarian tumors. Growth 21: 129135.Google Scholar
King, R. C. 1958. Further studies of oogenesis in Drosophila melanogaster. Drosoph. Inf. Serv. 32: 131.Google Scholar
King, R. C. 1963. Studies on early stages of insect oogenesis. R. ent. Soc. Lond. Symp. Insect Reproduction, pp. 1324.Google Scholar
King, R. C. and Burnett, R. G.. 1957. Oogenesis in adult Drosophila melanogaster. V: Mutations which affect nurse cell nuclei. Growth 21: 263280.Google ScholarPubMed
King, R. C. and Burnett, R. G.. 1959. An autoradiographic study of uptake of tritiated glycine, thymidine and uridine by fruit fly ovaries. Science 129: 16741675.CrossRefGoogle ScholarPubMed
King, R. C., Burnett, R. G., and Staley, N. A.. 1957. Oogenesis in adult Drosophila melanogaster. IV: Hereditary ovarian tumors. Growth 21: 239261.Google ScholarPubMed
King, R. C. and Falk, G. T.. 1960. In vitro incorporation of uridine-H3 into developing fruit fly oocytes. J. Biophys. Biochem. Cytol. 8: 550553.CrossRefGoogle Scholar
King, R. C. and Sang, J. H.. 1959. Öogenesis in adult Drosophila melanogaster. VIII: The role of folic acid in oögenesis. Growth 23: 3753.Google ScholarPubMed
King, R. C., Sang, J. H., and Leth, C. B.. 1961. The hereditary ovarian tumors of the fes mutant of Drosophila melanogaster. Exp. Cell Res. 23: 108117.CrossRefGoogle ScholarPubMed
Landa, V. and Režábová, B.. 1964. The effect of chemosterilants on the development of reproductive organs in insects. Proc. XII int. Congr. Ent. (Lond.) 1964(1965): 516517.Google Scholar
Levenbook, L., Travaglini, E. C., and Schultz, J.. 1958. Nucleic acids and their components as affected by the chromosomes of Drosophila melanogaster. I: Constitution and amount of the ribonucleic acids in the unfertilized egg. Exp. Cell Res. 15: 4361.CrossRefGoogle ScholarPubMed
Lusis, O. 1963. The histology and histochemistry of development and resorption in the terminal oocytes of the desert locust, Schistocerca gregaria. Q. Jl microsc. Sci. 104: 5768.Google Scholar
Mácha, J. 1969. Fat body metabolism in Pyrrhocoris apterus during oogenesis and after sterilization with 6-azauridine. Acta ent. bohemoslov. 66: 193197.Google Scholar
Masner, P. The sterilization effect of 6-azauridine on the ovaries and corpora allata interaction in the bug Pyrrhocoris apterus. Proc. int. Symp. Insect Endocrines, Brno (1966), 7 pp. (In press.)Google Scholar
Masner, P. 1968. The inductors of differentiation of prefollicular tissue and the follicular epithelium in ovarioles of Pyrrhocoris apterus (Het.). J. Embryol. exp. Morphol. 20: 113.Google Scholar
Matolín, S. 1969. Effect of chemosterilants on the embryonic development of Musca domestica. Acta ent. bohemoslov. 66(2): 6569.Google Scholar
Palm, N. B. 1948. Normal and pathological histology of the ovaries in Bombus Latr. (Hym.). Opusc. ent.suppl. 7, 101 pp.Google Scholar
Patchin, S. and Davey, K. G.. 1968. The effects of injected aminopterin on egg production in Rhodnius prolixus. J. Insect Physiol. 14: 15451551.CrossRefGoogle Scholar
Režábová, B. and Landa, V.. 1967. Effect of 6-azauridine on the development of the ovaries in the house fly Musca domestica L. (Diptera). Acta ent. bohemoslov. 64(5): 344351.Google Scholar
Schlottman, L. L. and Bonhag, P. F.. 1956. Histology of the ovary of the adult mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Univ. Calif. Publs Ent. 11(6): 351394. pls. 4250.Google Scholar
Schultz, J. 1956. The relations of the heterochromatic chromosome regions to the nucleic acids of the cell. Cold Spring Harb. Symp. quant. Biol. 21: 307328.CrossRefGoogle Scholar
Škoda, J. 1967. 6-azauridine (ribo-azauracil r). Prague, Chemapol.Google Scholar
Škoda, J., Hess, V. P., and Šorm, F.. 1957. The biosynthesis of 6-azauracil riboside by Escherichia coli growing in the presence of 6-azauracil. Experientia 13: 150.CrossRefGoogle Scholar
Travaglini, E. C., Levenbook, L., and Schultz, J.. 1958. Nucleic acids and their components as affected by the chromosome of Drosophila melanogaster. II: Nucleosides and related compounds in the acid soluble fraction of the unfertilized egg. Exp. Cell Res. 15: 6279.CrossRefGoogle ScholarPubMed
Vanderberg, J. P. 1964. Synthesis and transfer of DNA, RNA and protein during vitellogenesis in Rhodnius prolixus. Biol. Bull. mar. biol. Lab., Wood's Hole 125: 556575.CrossRefGoogle Scholar
Wigglesworth, V. B. 1959. A simple method for cutting sections in the 0.5 to 1 μ range, and for sections of chitin. Q. Jl microsc. Sci. 100(2): 315320.Google Scholar
Wigglesworth, V. B. 1964. The union of protein and nucleic acid in the living cell and its demonstration by osmium staining. Q. Jl microsc. Sci. 105(1): 113122.Google Scholar
Zalokar, M. 1960. Sites of ribonucleic acid and protein synthesis in Drosophila. Exp. Cell Res. 19: 184196.CrossRefGoogle ScholarPubMed