Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T05:36:37.441Z Has data issue: false hasContentIssue false

GENETIC DIVERGENCE AMONG EASTERN NORTH AMERICAN CONE BEETLES, CONOPHTHORUS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Peter de Groot
Affiliation:
Forestry Canada, Forestry Pest Management Institute, Box 490, Sault Ste. Marie, Ontario, CanadaP6A 5M7
George T. Harvey
Affiliation:
Forestry Canada, Ontario Region, Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Pat M. Roden
Affiliation:
Forestry Canada, Ontario Region, Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

Genetic divergence among populations of cone beetles, Conophthorus banksianae McPherson, C. coniperda (Schwarz), and C. resinosae Hopkins, was assessed by isozyme electrophoretic data. All but one of the eight loci examined were polymorphic, and one locus (Pgi) was sex-linked for C. coniperda. Genotype frequencies generally met Hardy-Weinberg expectations, and fixation index (FST) values indicated low-to-moderate genetic differences among conspecific populations. Fixed allele differences were detected at two loci, Pgi and Dia-2, which separated C. resinosae from C. coniperda, and thus confirmed their specific status established previously by morphological, karyological, and other biochemical characters. Electrophoretic data strongly suggested C. coniperda does not attack red pine cones, and C. resinosae does not attack white pine cones. No diagnostic loci were found to separate C. resinosae from C. banksianae. Phenetic clustering and pairwise comparisons of genetic distance coefficients indicated very little genetic divergence between C. resinosae and C. banksianae. These data were interpreted as failing to reject the null hypothesis that C. resinosae and C. banksianae are one species, an interpretation consistent with available taxonomic evidence from ecological, karyological, and other biochemical characters.

Résumé

L’électrophorèse des isoenzymes a permis d’étudier la divergence génétique au sein des populations de scolytes des pins, Conophthorus banksianae McPherson, C. coniperda (Schwarz) et C. resinosae Hopkins. Les huit locus examinés, à l’exception d’un seul, se sont avérés polymorphes et l’un de ces locus (Pgi) est lié aux chromosomes sexuels chez C. coniperda. Les fréquences génotypiques sont généralement conformes au modèle Hardy-Weinberg et la valeur des indices de fixation (FST) indique l’existence de différences génétiques peu ou modérément importantes entre des populations conspécifiques. Des différences entre les allèles fixes ont été perçues à deux locus, Pgi et Dia-2, qui séparent C. resinosae et C. coniperda, confirmant ainsi le statut spécifique de ces taxons établi selon des caractéristiques morphologiques et karyologiques et selon d’autres caractères biochimiques. Les données obtenues à l’électrophorèse indiquent que C. coniperda n’attaque pas les cônes du pin rouge et que C. resinosae n’attaque pas les cônes du pin blanc. Nous n’avons pas trouvé de locus permettant de séparer C. resinosae et C. banksianae. L’analyse de groupements phonétiques et la comparaison deux à deux des coefficients de distance génétiques indiquent qu’il y a très peu de divergence génétique entre C. resinosae et C. banksianae. Ces données ne permettent pas de rejeter l’hypothèse nulle selon laquelle C. resinosae et C. banksianae forment une seule espèce; cette interprétation est en accord avec les preuves taxonomiques disponibles, preuves basées sur des caractéristiques écologiques, karyologiques et biochimiques.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J. 1975. Genetic differentiation during the speciation process. Evol. Biol. 8: 178.Google Scholar
Ayala, F.J., and Powell, J.R.. 1972. Allozymes as diagnostic characters of sibling species of Drosophila. Proc. Nat. Acad. Sci. USA 69: 10941096.CrossRefGoogle ScholarPubMed
Ayala, F.J., Powell, R.J., Tracey, M.L., Mourao, C.A., and Perez-Salas, S.. 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113139.CrossRefGoogle ScholarPubMed
Avise, J.C., and Aquadro, C.F.. 1982. A comparative summary of genetic distances in the vertebrates. Evol. Biol. 15: 151158.CrossRefGoogle Scholar
de Groot, P. 1986. Cone and twig beetles (Coleoptera: Scolytidae) of the genus Conophthorus: An annotated bibliography. Can. For. Serv., For. Pest Manage. Inst., Inf. Rep. FPM-X-76. 36 pp.Google Scholar
de Groot, P. 1990. Taxonomy, biology and control of Conophthorus in eastern North America. pp. 37–46 in West, R.J. (Ed.), Proceedings, Cone and Seed Pest Workshop, 4 Oct. 1989, St. John's, Newfoundland, Canada. For. Can. Inf. Rep. N-X-274. 128 pp.Google Scholar
de Groot, P., and Ennis, T.J.. 1990. Cytotaxonomy of Conophthorus (Coleoptera: Scolytidae) in eastern North America. Can. Ent. 122: 11311135.CrossRefGoogle Scholar
Diehl, S.R., and Bush, G.L.. 1984. An evolutionary and applied perspective of insect biotypes. A. Rev. Ent. 29: 471504.CrossRefGoogle Scholar
Flores, J.L., and Bright, D.E.. 1987. A new species of Conophthorus from Mexico: Descriptions and biological notes (Coleoptera: Scolytidae). Coleopt. Bull. 41: 181184.Google Scholar
Futuyma, D.J., and Peterson, S.C.. 1985. Genetic variation in the use of resources by insects. A. Rev. Ent. 30: 217238.CrossRefGoogle Scholar
Hartl, D.L. 1981. A Primer of Population Genetics. Sinauer Assoc. Inc., Sunderland, MA. 191 pp.Google Scholar
Harvey, G.T., and Sohi, S.S.. 1985. Isozyme characterization of 28 cell lines from five insect species. Can. J. Zool. 63: 22702276.CrossRefGoogle Scholar
Hedlin, A.F., Yates, H.O., Tovar, D.C., Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1981. Cone and seed insects of North American conifers. Can. For. Serv., USDA For. Serv., Secr. Agric. Recur. Hidraul, Mexico. 122 pp.Google Scholar
Herdy, H. 1959. A method of determining the sex of adult bark beetles of the genus Conophthorus. Can. Dep. Agric. For. Biol. Div., Bi-Mon. Prog. Rep. 15(3): 12.Google Scholar
Hopkins, A.D. 1915. A new genus of Scolytid beetles. J. Wash. Acad. Sci. 5: 429433.Google Scholar
Jaenike, J. 1981. Criteria for ascertaining the existence of host races. Am. Nat. 117: 830834.CrossRefGoogle Scholar
Langor, D.W., and Spence, J.R.. 1991. Host effects on allozyme and morphological variation of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Can. Ent. 123: 395410.CrossRefGoogle Scholar
Mattson, W.J. 1989. Contributions to the biology of the jack pine tip beetle, Conophthorus banksianae (Coleoptera: Scolytidae), in Michigan. pp. 117–132 in Miller, G.E. (Ed.), Proceedings of the IUFRO Cone and Seed Insects Working Party. Forestry Canada, Victoria, B.C. 242 pp.Google Scholar
Mayr, E. 1969. Principles of Systematic Zoology. McGraw-Hill, New York, NY. 428 pp.Google Scholar
McPherson, J.E., Stehr, F.W., and Wilson, L.F.. 1970. A comparison between Conophthorus shoot-infesting beetles and Conophthorus resinosae (Coleoptera: Scolytidae). II. Reciprocal host and resin toxicity tests; with description of a new species. Can. Ent. 102: 10161022.CrossRefGoogle Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Page, M., Nelson, L.J., Haverty, M.I., and Blomquist, G.J.. 1990. Cuticular hydrocarbons of eight species of North American cone beetles, Conophthorus Hopkins. J. Chem. Ecol. 16: 11731198.CrossRefGoogle ScholarPubMed
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., Britton-Davidian, J., and Cobb, M.. 1988. Practical Isozyme Genetics. Ellis Horword Ltd., Chichester, England. 215 pp.Google Scholar
Poulik, M.D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature (London) 180: 14771479.CrossRefGoogle Scholar
Richardson, B.J., Baverstock, P.R., and Adams, M.. 1986. Allozyme Electrophoresis. A Handbook for Animal Systematics and Population Studies. Academic Press, Australia, Sydney. 410 pp.Google Scholar
Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, W.E., and Gestner, J.B.. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the oldfield mouse. Studies in Genetics. VI. Univ. Tex. Publ. 7103: 4990.Google Scholar
Shaw, C.R., and Prasad, R.. 1970. Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4: 297320.CrossRefGoogle ScholarPubMed
Sneath, P.H., and Sokal, R.R.. 1973. Numerical Taxonomy. W.H. Freeman and Co., San Francisco, CA. 573 pp.Google Scholar
Sturgeon, K., and Mitton, J.B.. 1986. Allozyme and morphological differentiation of mountain pine beetles Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) associated with host tree. Evolution 40: 290302.CrossRefGoogle ScholarPubMed
Swofford, D.L., and Selander, R.B.. 1981. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281283.CrossRefGoogle Scholar
Tabashnik, B.E., Mattson, W.J., and Miller, J.R.. 1985. Host acceptance behavior of the red pine cone beetle (Conophthorus resinosae). Entomologia exp. appl. 37: 37.CrossRefGoogle Scholar
Thomas, J.B. 1967. A comparative study of gastric caeca in adult and larval stages of bark beetles (Coleoptera: Scolytidae). Proc. ent. Soc. Ont. 97: 7183.Google Scholar
Thomas, J.B. 1971. The immature stages of Scolytidae: The genus Conophthorus (Coleoptera: Scolytidae). Can. Ent. 103: 10211026.CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae). A taxonomic monograph. Great Basin Nat. Mem. 6: 1359 pp.Google Scholar
Wood, S.L. 1989. Nomenclatural changes and new species of Scolytidae (Coleoptera), Part IV. Great Basin Nat. 49: 167185.Google Scholar
Wright, S. 1978. Evolution and the Genetics of Populations. Volume 4. Variability Within and Among Natural Populations. University of Chicago, Chicago, IL. 580 pp.Google Scholar