Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T17:47:52.282Z Has data issue: false hasContentIssue false

Genetic divergence among populations of Pissodes yunnanensis (Coleoptera: Curculionidae) in southwestern China

Published online by Cambridge University Press:  02 April 2012

Hongrui Zhang
Affiliation:
Faculty of Plant Protection, Yunnan Agricultural University, Kunming 650201, Yunnan Province, China
David W. Langor*
Affiliation:
Canadian Forest Service, Northern Forestry Centre, 5320 122nd Street, Edmonton, Alberta, Canada T6H 3S5
Hui Ye
Affiliation:
Department of Biology, Yunnan University, Kunming 650091, Yunnan Province, China
Zhengyue Li
Affiliation:
Faculty of Plant Protection, Yunnan Agricultural University, Kunming 650201, Yunnan Province, China
Richard D. Laffin
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6E 2E9
*
1Corresponding author (e-mail: dlangor@nrcan.gc.ca).

Abstract

The bark weevil, Pissodes yunnanensis Langor and Zhang, is an important pest of young Yunnan pine, Pinus yunnanensis Franchet (Pinaceae), in southwestern China. Populations of the host and weevil are disjunct, especially in the northwestern part of the range in Yunnan province. To estimate maternal gene flow and examine the genetic structure of Pissodes yunnanensis, we sequenced an 840-bp fragment of the mitochondrial cytochrome c oxidase I (COI) gene in 60 individuals from 7 populations in Yunnan and Guizhou provinces. Percent divergence among populations ranged from 0.001% to 2.1%. Nested clade analysis of 21 haplo types showed evidence of genetic structuring that is inferred to be primarily due to allopatric fragmentation and a low level of gene flow. Analysis of molecular variance also showed significant genetic structuring and restricted gene flow among weevil populations, especially between northwestern and eastern regions of the range. Such genetic structuring may be important for pest management programs. Phylogenetic analyses comparing the same 761-bp sequence among P. yunnanensis, Pissodes punctatus Langor and Zhang from southwestern China, and five Nearctic species of Pissodes showed that (i) the two Chinese species were most closely related to each other, (ii) the four species in the P. strobi (Peck) species group formed a distinct clade, and (iii) these two clades were more similar to each other than to the Nearctic species P. affinis Randall.

Résumé

Le charançon du tronc Pissodes yunnanensis Langor et Zhang est un important ravageur de jeunes pins du Yunnan, Pinus yunnanensis Franchet (Pinaceae), dans le sud-ouest de la Chine. Les populations de l'hôte et du charançon sont séparées, particulièrement dans la portion nord-ouest de leur répartition dans la province du Yunnan. Afin d'estimer le flux génique maternel et d'examiner la structure génétique chez Pissodes yunnanensis, nous avons séquencé un fragment de 840 pb du gène mitochondrial de la sous-unité I de la cytochrome oxydase c (COI) chez 60 individus appartenant à 7 populations dans les provinces de Yunnan et de Guizhou. Le pourcentage de divergence entre les populations varie de 0,001 % à 2,1 %. Une analyse cladistique emboîtée de 21 haploptypes donne des indications d'une structuration génétique que nous croyons être principalement due à la fragmentation allopatrique et à un faible taux de flux génique. L'analyse de la variance moléculaire montre aussi une importante structuration génétique et un flux génique réduit au sein des populations de charançons, particulièrement entre les régions du nord-ouest et de l'est de l'aire de répartition. Une telle structuration génétique peut avoir des conséquences sur les programmes de lutte contre ces ravageurs. Des analyses phylogénétiques qui comparent la même séquence de 761 pb chez P. yunnanensis, Pissodes punctatus Langor et Zhang du sud-ouest de la Chine et cinq espèces néarctiques de Pissodes révèlent que (i) les deux espèces chinoises sont celles qui sont les plus apparentées l'une à l'autre, (ii) les quatre espèces du groupe d'espèces de P. strobi (Peck) forment un clade distinct et (iii) ces deux clades sont plus semblables l'un à l'autre qu'ils ne le sont à l'espèce néarctique P. affinis Randall.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyce, T.M., Zwick, M.E., and Aquadro, C.F. 1994. Mitochondrial DNA in the bark weevils: phylogeny and evolution in the P. strobi species group. Molecular Biology and Evolution, 11: 183194.Google Scholar
Clary, D.O., and Wolstenholme, D.R. 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution, 22: 252271.CrossRefGoogle ScholarPubMed
Clement, M., Derington, J., and Posada, D. 2004. TCS: estimating gene genealogies. Version 1.18 [computer program]. Brigham Young University, Provo Utah.Google Scholar
Dupanloup, I., Schnieder, S., and Excoffier, L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11: 25712581.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P.E., and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479491.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783791.CrossRefGoogle ScholarPubMed
Forest Institute of Yunnan Province. 1985. The techniques of forestation on main tree species of Yunnan. Yunnan People's Press, Yunnan, China. [In Mandarin.]Google Scholar
Hong, Y., Wei, Q., and Fu, H.-R. 1999. Allozyme method in study of the population genetics of Pinus yunnanensis. Acta Botanica Yunnanica, 21: 6880.Google Scholar
Hong, Y., Song, G., Fu, H.-R., and Qiao, J.-H. 2000. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species. Acta Botanica Sinica, 42: 107110. [In Mandarin.]Google Scholar
Laffin, R.D., Langor, D.W., and Sperling, F.A.H. 2004. Population structure and gene flow in the white pine weevil, Pissodes strobi (Coleoptera, Curculionidae). Annals of the Entomological Society of America, 97: 949956.CrossRefGoogle Scholar
Langor, D.W., and Sperling, F.A.H. 1995. Mitochondrial DNA variation and identification of bark weevils in the Pissodes strobi species group in western Canada (Coleoptera: Curculionidae). The Canadian Entomologist, 127: 895911.Google Scholar
Langor, D.W., and Sperling, F.A.H. 1997. Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae). Insect Molecular Biology, 6: 255265.CrossRefGoogle ScholarPubMed
Langor, D.W., Situ, Y.X., and Zhang, R. 1999. Two new species of Pissodes (Coleoptera: Curculionidae) from China. The Canadian Entomologist, 131: 593603.CrossRefGoogle Scholar
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.CrossRefGoogle Scholar
Posada, D., and Templeton, A.R. 2004. GeoDis: differentiating population structure from history. Version 2.2 [computer program]. Brigham Young University, Provo, Utah.Google Scholar
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Ehrlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science (Washington, D.C.), 239: 487491.CrossRefGoogle ScholarPubMed
Schneider, S., Roessli, D., and Excoffier, L. 2000. Arlequin: a software for population genetics data analysis. Version 2.0 [computer program]. University of Geneva, Geneva, Switzerland.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.CrossRefGoogle Scholar
Swofford, D. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0 beta [computer program]. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105: 437460.Google Scholar
Templeton, A.R. 2004. Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology, 13: 789809.Google Scholar
Templeton, A.R., Routman, E., and Phillips, C.A. 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140: 767782.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 46734680.CrossRefGoogle ScholarPubMed
Williams, D.J.M., and Langor, D.W. 2002. Description of the mature larvae of the four species of the Pissodes strobi complex (Coleoptera: Curculionidae). The Canadian Entomologist, 134: 945.CrossRefGoogle Scholar
Zhang, H., Ye, H., Haack, R.A., and Langor, D.W. 2004. Biology of Pissodes yunnanensis (Coleoptera: Curculionidae), a pest of Yunnan pine in southwestern China. The Canadian Entomologist, 136: 719726.CrossRefGoogle Scholar