Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T05:21:37.448Z Has data issue: false hasContentIssue false

Genetic variability and expression of phenological and morphological differences in populations of Delia radicum (Diptera: Anthomyiidae)

Published online by Cambridge University Press:  31 May 2012

D.G. Biron*
Affiliation:
Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888, succursale Centre Ville, Montréal, Québec, Canada H3C 3P8
D. Coderre
Affiliation:
Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888, succursale Centre Ville, Montréal, Québec, Canada H3C 3P8
G. Boivin
Affiliation:
Horticultural Research and Development Center, Agriculture and Agri-Food Canada, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada J3B 3E6
E. Brunel
Affiliation:
INRA, UMR Bio3P, Domaine de la motte, BP 35327, 35653 Le Rheu cedex France
J.P. Nénon
Affiliation:
Laboratoire d'Ecobiologie des Insectes Parasitoïdes, Université de Rennes I, Campus de Beaulieu, avenue du Général Leclerc, 35042 Rennes CEDEX, France
*
1 Corresponding author (e-mail: biron@mpl.ird.fr).

Abstract

In this study, survival to adult stage, duration of development of the immature stages, egg micromorphology, DNA polymorphism, and reproductive compatibility were measured for early- and late-emerging phenotypes of Delia radicum Linneaus to determine whether both phenotypes had evolved differences other than the duration of puparial development and to find the most likely genetic system controlling the expression of both phenotypes. Survival to adult stage was not significantly different between the early- and late-emerging phenotypes. Random amplified polymorphic DNA (RAPD) primers tested suggest that it is possible to distinguish an early-emerging fly from a late-emerging fly. Furthermore, the results suggest that the early- and late-emerging phenotypes differ not only in the timing of adult emergence but also in their egg structure (egg micromorphology) and in their larval and puparial mortality. These two phenotypes are not reproductively or ecologically isolated. The genetic system controlling the expression of early and late emergers in a population of D. radicum is probably an adaptive strategy reducing predator and parasitoid pressures, optimizing resource utilization, and ensuring survival of D. radicum during atypical winters. This strategy could eventually lead to temporal sympatric speciation if there are changes in a few key loci responsible for host plant selection and fitness on a new host.

Résumé

Dans cette étude, les phénotypes hâtif et tardif de Delia radicum Linneaus ont été comparés en ce qui concerne la probabilité de survie jusqu’au stade adulte, les durées de développement des stades immatures, la micromorphologie des œufs, le polymorphisme de leur ADN et leur compatibilité reproductive, afin de déterminer si ces deux phénotypes ont acquis des traits distinctifs autre que la durée du développement nymphal et afin d’identifier le système génétique causant l’expression des deux phénotypes. La survie jusqu’au stade adulte n’est pas significativement différente entre les deux phénotypes. Les amorces ADN polymorphe amplifiées au hasard (RAPD) suggèrent qu’il est possible de distinguer les deux phénotypes. Nos résultats suggèrent que les deux phénotypes sont distincts non seulement pour la période d’émergence mais aussi pour la micromorphologie de leurs œufs et pour la mortalité aux stades larvaire et nymphale. Les individus des deux phénotypes, hâtif et tardif, ne présentent pas d’isolements reproductifs et écologiques. Le système génétique contrôlant l’expression des deux phénotypes est probablement un mécanisme de protection de la variabilité génétique au sein d’une population conférant certains avantages écologiques : diminuer les pressions exercées par les prédateurs et les parasitoïdes, optimiser l’utilisation de la ressource et assurer la survie de D. radicum durant les années atypiques. Il est possible que ce mécanisme adaptatif cause une spéciation sympatrique temporelle s’il y a des changements au niveau de loci impliqués dans la sélection de la plante hôte et dans la valeur adaptative d’un individu.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biron, D.G. 1998. Génétique des populations de Delia radicum L. (Diptera : Anthomyiidae). Thèse, D587, Université du Québec à MontréalGoogle Scholar
Biron, D.G. 1999. Mécanisme adaptatif causant au stade pupe l'expression de deux biotypes à l'intérieur des populations de la mouche du chou (Diptera : Anthomyiidae) et probablement pour d'autres espèces du genre Delia. Rapport de Coopération Franco-Canadienne. Paris, France : Ministère des Affaires Etrangères de la FranceGoogle Scholar
Biron, D.G., Boivin, G., Landry, B.S. 1995. Micro-extraction de l'ADN génomique de la mouche du chou. CRDH, Agriculture et Agro-Alimentaire Canada, St-Jean-sur-Richelieu, Résumé de recherches 24: 26–7Google Scholar
Biron, D.G., Langlet X, Boivin G, Brunel, E. 1998. Expression of the early and late emerging phenotypes in both diapausing and non-diapausing Delia radicum L. pupae (Diptera : Anthomyiidae). Entomologia Experimentalis et Applicata 87: 119–24Google Scholar
Biron, D.G., Landry, B.S., Nénon, J.P., Coderre, D., Boivin, G. 2000. Geographical origin of an introduced pest species, Delia radicum (Diptera: Anthomyiidae), determined by RAPD analysis and egg micromorphology. Bulletin of Entomological Research 90: 2332Google Scholar
Bradshaw, W.E. 1973. Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54: 1247–59Google Scholar
Buck, M. 2001. Protogyny, protandry, and bimodal emergence patterns in necrophagous Diptera. The Canadian Entomologist 133: 521–31CrossRefGoogle Scholar
Bush, G.L., Smith, J.J. 1997. The sympatric origin of phytophagous insects. pp 319in Dettner, K., Bauer, G., Völkl, W. (Eds), Vertical food web interactions: evolutionary patterns and driving forces. Heidelberg, Germany: Spinger-VerlagCrossRefGoogle Scholar
Bush, G.L., Smith, J.J. 1998. The genetics and ecology of sympatric speciation: a case study. Research on Population Ecology 40: 175–87CrossRefGoogle Scholar
CAB International Institute of Entomology. 1989. Distribution maps of pest. Delia radicum (Linneaus), maps 83 (revised). London: CAB International Institute of EntomologyGoogle Scholar
Calcote, V.R., Hyder, D.E. 1979. Occurrence of a bimodal emergence pattern in the hickory shuckworm. Journal of Economic Entomology 72: 701–02CrossRefGoogle Scholar
Cheung, W.Y., Hubert, N., Landry, B.S. 1993. A simple and rapid DNA microextraction for plant, animal and insect suitable for RAPD and other PCR analysis. PCR Methods and Application 3: 6970Google Scholar
Collier, R.H., Finch, S., Anderson, M. 1989 a. Laboratory studies on late-emergence in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 50: 233–40CrossRefGoogle Scholar
Collier, R.H., Finch, S., Anderson, M. 1989 b. Oxygen uptake by pupae of early and late emerging phenotypes of the cabbage root fly Delia radicum L. Functional Ecology 3: 613–6CrossRefGoogle Scholar
Danilevskii, A.S. 1965. Photoperiodism and Seasonal development of Insects. Edinburgh: Olivier and BoydGoogle Scholar
Finch, S. 1977. Monitoring insect pests of cruciferous crops. pp 219–26 in British Crop Protection Conference—Pests and Diseases 1977. Berks, United Kingdon: British Crop Protection CouncilGoogle Scholar
Finch, S. 1989. Ecological considerations to the management of Delia pest species in vegetable crops. Annual Review of Entomology 34: 117–37CrossRefGoogle Scholar
Finch, S., Collier, R.H. 1983. Emergence of flies form overwintering populations of cabbage root fly pupae. Ecological Entomology 8: 2936CrossRefGoogle Scholar
Finch, S., Collier, R.H. 1985. Laboratory studies on aestivation in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 38: 137–43CrossRefGoogle Scholar
Finch, S., Collier, R.H., Skinner, G. 1986. Local population differences in emergence of cabbage root flies from south-west of Lancashire: implications for pest forecasting and population divergence. Ecological Entomology 11: 139–45CrossRefGoogle Scholar
Finch, S., Bromand, E., Brunel, E., Bues, M., Collier, R.H., Dunne, R., Foster, G., Freuler, J., Hommes, M., Van Keymeulen, D.J., Mowat, D.J., Pelerents, C., Skinner, G., Stäedler, E., Theunissen, J. 1988. Emergence of cabbage root flies from puparia collected throughout northern Europe. pp 33–6 in Cavalbro, R., Pelerents, C. (Eds), Progress on pest management in field vegetables. Rotterdam, the Netherlands: AA BalkemaGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Goulson, D. 1993. The evolutionary significance of bimodal emergence in the butterfly, Maniola jurtina (Lepidoptera : Satyrinae) (L.). Biological Journal of the Linnean Society 49: 127–39CrossRefGoogle Scholar
Hagen, R.C., Lederhouse, R.C. 1985. Polymodal emergence of the tiger swallowtail Papilio glaucus (Lepidotpera: Papilionidae): source of a false second generation in central New York state. Ecological Entomology 10: 1928Google Scholar
Harris, C.R., Svec, H.J. 1966. Mass rearing of the cabbage maggot under controlled environmental conditions with observations on the biology of cyclodiene-susceptible and resistant strains. Journal of Economic Entomology 59: 569–73CrossRefGoogle Scholar
Harvey, J.A., Harvey, I.F., Thompson, D.J. 1994. Flexible larval growth allows use of a range of host sizes by parasitoids wasp. Ecology 75: 1420–8CrossRefGoogle Scholar
Jervis, M.A., Copland, M.J.W. 1996. The life cycle. pp 412–30 in Insect natural enemies: practical approaches to their study and evaluation. London: Chapman and HallGoogle Scholar
Jørgensen, J. 1957. The turnip root fly (Chorthophila floralis Fall.) in Denmark. New investigations concerning its biology, parasites and control. Tidsskrift for Planteavl 60: 657712Google Scholar
Jørgensen, J. 1976. Biological peculiarities of Hylemia floralis Fall. in Denmark. Annales Agriculturae Fenniae 15: 1623Google Scholar
Kruskal, J.B. 1964 a. Multidimensional scaling by optimising goodness of fit to nonmetric hypothesis. Psychometrika 29: 127Google Scholar
Kruskal, J.B. 1964 b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 2842CrossRefGoogle Scholar
Landry, B.S., Dextraze, L., Boivin, G. 1993. Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome 36: 580–7CrossRefGoogle ScholarPubMed
Liu, S.S. 1985. Development, adult size and fecundity of Aphidius sonchi reared in two instars of its aphids host, Hyperomyzus latucae. Entomologia Experimentalis et Applicata 37: 41–8Google Scholar
Lundblad, O. 1933. The cabbage root flies. Statens Vaxtskyddsanstalt Meddelanden 3: 1103Google Scholar
Missonnier, J. 1963. Etude écologique du développement nymphal de deux diptères muscides phytophages : Pegomia betae Curtis et Chorthophila brassicae (Bouché). Annales des Epiphyties 14: 293310Google Scholar
Mukerji, M.K., Harcourt, D.G. 1970. Design of a sampling plan for studies on the population dynamics of the cabbage maggot. The Canadian Entomologist 102: 1513–8CrossRefGoogle Scholar
Oatman, E.A. 1964. Apple maggot emergence and seasonal activity in Wisconsin. Journal of Economic Entomology 57: 676–9CrossRefGoogle Scholar
Rabb, R.L. 1966. Diapause in Protoparce sexta (Lepidoptera : Sphingidae). Annals of the Entomological Society of America 59: 160–5CrossRefGoogle Scholar
Rogers, L.E., Grant, J.F. 1991. Seasonal incidence of male dogwood borer (Lepidoptera: Sesiidae) and other species of clearwing moths in selected habitats in Tennessee. Environmental Entomology 20: 520–5CrossRefGoogle Scholar
Rygg, T. 1962. The cabbage root flies. Investigations concerning emergence periods and control in Norway. Forskning og Forsok i Landbruket 13: 85114Google Scholar
Schopf, A., Hoch, G. 1997. Bionomics and significance of Glytapunteles liparidis (Hym., Braconidae) as a regulator of Lymantria dispar (Lep., Lymantriidae) in different host population densities. Journal of Applied Entomology 121: 195203CrossRefGoogle Scholar
Scudder, S.H. 1889. The butterflies of the eastern United States and Canada. Volume II. Cambridge, MassachusettsGoogle Scholar
Sequeira, R., Mackauer, M. 1992. Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosipho pisum. Evolutionary Ecology 6: 3444CrossRefGoogle Scholar
Sternburg, J.G., Waldbauer, G.P. 1969. Bimodal emergence of adult cecropia moths under natural conditions. Annals of the Entomological Society of America 62: 1422–9CrossRefGoogle Scholar
Taskdal, G. 1992. Aspects of the biology of brassica root flies (Delia floralis and D. radicum) in relation to IPM in southwest Norway. IOBC WPRS Bulletin 15: 5361 [Zurich, Switzerland: International Organisation for Biological and Integrated Control of Noxious Animals and Plants]Google Scholar
Tauber, M.J., Tauber, C.A. 1978. Evolution of phenological strategies in insects: a comparative approach with eco-physiological and genetic considerations. pp 5371in Dingle, H. (Ed), Evolution of insect migration and diapause. New York: Springer-VerlagCrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal Adaptations of Insects. New York: Oxford University PressGoogle Scholar
Turnock, W., Boivin, G. 1997. Inter- and intra-population differences in the effects of temperature on postdiapause development of Delia radicum. Entomologia Experimentalis et Applicata 84: 255–65CrossRefGoogle Scholar
Valentine, J.W. 1976. Genetic strategies of adaptation. pp 7894in Ayala, F.J. (Ed), Molecular evolution. Saunderland, Massachusetts: Sinauer Associates IncGoogle Scholar
Waldbauer, G.P. 1978. Phenological adaptation and the polymodal emergence patterns of insects. pp 127–40 in Dingle, H. (ed), Evolution of insect migration and diapause. New York: Springer-VerlagGoogle Scholar
Waldbauer, G.P., Sternburg, J.G. 1973. Polymorphic termination of diapause by ceropia: genetic and geographical aspects. Biological Bulletin (Woods Hole) 145: 627–41CrossRefGoogle Scholar
Waldbauer, G.P., Sternburg, J.G. 1986. The bimodal emergence curve of adult Hyalophora cecropia: conditions for the initiation of development by second mode pupae. Entomologia Experimentalis et Applicata 41: 315–7CrossRefGoogle Scholar
Walgenbach, J.F., Eckenrode, C.J., Straub, R.W. 1993. Emergence patterns of Delia radicum (Diptera: Anthomyiidae) populations from North Carolina and New York. Environmental Entomologist 22: 559–66CrossRefGoogle Scholar
Whistlecraft, J.W., Toman, J.H., Harris, C.R. 1985. Delia radicum. pp 6773in Singh, P., Moore, R.R. (Eds), Handbook of insect rearing. Volume 2. Amsterdam: Elsevier Science PublishersGoogle Scholar
Willis, H., Waldbauer, G.P., Sternburg, J.G. 1974. The initiation of development by early and late emerging morphs of Hyalophora cecropia. Entomologia Experimentalis et Applicata 17: 219–22CrossRefGoogle Scholar