Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T17:53:26.170Z Has data issue: false hasContentIssue false

THE HAEMOLYMPH PLASMA COMPOSITION OF ADULTS, PUPAE, AND LARVAE OF THE COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY), AND DEVELOPMENT OF PHYSIOLOGICAL SALINE SOLUTIONS

Published online by Cambridge University Press:  31 May 2012

Yvan Pelletier
Affiliation:
Agriculture Canada Research Station, PO Box 20280, Fredericton, New Brunswick, Canada E3B 427
Catherine L. Clark
Affiliation:
Agriculture Canada Research Station, PO Box 20280, Fredericton, New Brunswick, Canada E3B 427

Abstract

Haemolymph from Colorado potato beetles at larval, pupal, and adult stages was analyzed for pH, osmolality, and concentrations of magnesium, calcium, potassium, sodium, chloride, phosphate, and citrate. Differences in the concentrations of some ions observed between stages were used to formulate physiological saline solutions for the adult and larval stages.

Résumé

Nous avons déterminé la concentration en magnésium, calcium, potassium, sodium, chlore, phosphate, citrate, le pH et l’osmolalité du sang provenant de doryphores de la pomme de terre au stade larvaire, nymphal et adult. Des solutions physiologiques ont été développées pour le stade larvaire et l’adulte en tenant compte des différences de concentration de certain éléments.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davenport, A.P., and Wright, D.J.. 1985. Physiological saline for the larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) based on an analysis of the hemolymph. Journal of Economic Entomology 78: 11511153.CrossRefGoogle Scholar
de Loof, A., and de Wilde, J.. 1970. The relation between haemolymph proteins and vitellogenesis in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology 16: 157169.CrossRefGoogle Scholar
Duchâteau, G., Florkin, M., and Leclercq, J.. 1953. Concentrations des bases fixes et types de composition de la base totale de l'hemolymphe des insectes. Archives Internationales de Physiologie 61: 518549.CrossRefGoogle Scholar
Florkin, M., and Jeuniaux, C.. 1974. Hemolymph: Composition. pp. 255–308 in Rockstein, M. (Ed.), The Physiology of Insecta. Vol. V. Academic Press, New York, NY. 682 pp.Google Scholar
Jones, J.C. 1977. The Circulatory System of Insects. Charles Thomas, Springfield, IL. 255 pp.Google Scholar
Mullins, D.E. 1985. Chemistry and physiology of the hemolymph. pp. 355–400 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology. Vol. 3. Integument, Respiration and Circulation. Pergamon, New York, NY. 897 pp.Google Scholar
Rockstein, M., and Herron, P.W.. 1951. Colorimetric determination of inorganic phosphate in microgram quantities. Analytical Chemistry 23: 15001501.CrossRefGoogle Scholar
Sutcliffe, D.W. 1963. The chemical composition of haemolymph in insects and some other arthropods, in relation to their phylogeny. Comparative Biochemistry and Physiology 9: 121135.CrossRefGoogle Scholar
Todd, P.L., and Thornhill, B.A.. 1989. Analysis of the haemolymph of Plutella xylostella (Lepidoptera: Noctuidae) and subsequent development of a physiological saline. Journal of Economic Entomology 82(4): 10331039.CrossRefGoogle Scholar
Zender, R., de Torrente, C., and Schenider, U.. 1969. Analyse du citrate plasmatique par voie enzymatique sans déproteinization. Clinica Chimica Acta 24: 335340.CrossRefGoogle ScholarPubMed