Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T17:42:00.916Z Has data issue: false hasContentIssue false

HOST RESISTANCE TO THE FIR ENGRAVER BEETLE, SCOLYTUS VENTRALIS (COLEOPTERA: SCOLYTIDAE): 4. EFFECT OF DEFOLIATION ON WOUND MONOTERPENE AND INNER BARK CARBOHYDRATE CONCENTRATIONS3

Published online by Cambridge University Press:  31 May 2012

L. C. Wright
Affiliation:
Washington State University, Pullman 99164
A. A. Berryman
Affiliation:
Washington State University, Pullman 99164
S. Gurusiddaiah
Affiliation:
Washington State University, Pullman 99164

Abstract

Monoterpene production, inner bark carbohydrate concentrations, and fir engraver attacks on grand fir were monitored for 3 years following Douglas-fir tussock moth defoliation. Monoterpenes were reduced for 2 years following defoliation. Defoliation caused a reduction in total sugars the first year following defoliation and a reduction in starch the second year. Total sugars and the previous year’s starch concentrations were positively correlated with monoterpene production. The trees which produced the least amounts of monoterpenes were the ones successfully attacked by the fir engraver.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berryman, A. A. 1969. Responses of Abies grandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 101: 10331041.CrossRefGoogle Scholar
Berryman, A. A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22: 598602.CrossRefGoogle Scholar
Bidwell, R. G. S. 1974. Plant Physiology. Macmillan, New York. 643 pp.Google Scholar
Bordasch, R. P. and Berryman, A. A.. 1977. Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 2. Repellency of Abies grandis resins and some monoterpenes. Can. Ent. 109: 95100.CrossRefGoogle Scholar
Chapman, J. A., Farris, S. H., and Kinghorn, J. M.. 1963. Douglas-fir sapwood starch in relation to log attack by the ambrosia beetle, Trypodendron. Forest Sci. 9: 430439.Google Scholar
Cobb, F. W. Jr., Krstic, M., Zavarin, E., and Barber, H. W. Jr., 1968. Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathology 58: 13271335.Google Scholar
Croteau, R., Burbott, A. J., and Loomis, W. D.. 1972. Apparent energy deficiency in mono- and sesquiterpene biosynthesis in peppermint. Phytochemistry 11: 29372948.CrossRefGoogle Scholar
Croteau, R. and Loomis, W. D.. 1975. Biosynthesis and metabolism of monoterpenes. Int. Flavours (Sept./Oct.): 292296.Google Scholar
Dewey, J. E., Ciesla, W. M., and Meyer, H. E.. 1974. Insect defoliation as a predisposing agent to a bark beetle outbreak in eastern Montana. Environ. Ent. 3: 722.CrossRefGoogle Scholar
Hare, R. C. 1966. Physiology of resistance to fungal diseases in plants. Botan. Rev. 2: 95137.CrossRefGoogle Scholar
Hodge, J. E. and Hofreiter, B. T.. 1962. Determination of reducing sugars and carbohydrates. In Whistler, and Wolfrom, (Eds.), Methods of Carbohydrate Chemistry. Vol. I. Academic Press, New York.Google Scholar
Klouwen, M. H. and ter Heide, R.. 1962. Studies on terpenes. I. A systematic analysis of monoterpene hydrocarbons by gas-liquid chromatography. J. Chromatog. 7: 297310.CrossRefGoogle Scholar
Livingston, R. L. 1971. Aspects of the relationship between the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae) and certain associated fungi. Ph.D. Thesis, Washington State University.Google Scholar
Livingston, R. L. and Berryman, A. A.. 1972. Fungus transport structures in the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 104: 17931800.CrossRefGoogle Scholar
Little, C. H. A. 1970. Derivation of the springtime starch increase in balsam fir (Abies balsamea). Can. J. Bot. 48: 19951999.CrossRefGoogle Scholar
Patterson, J. E. 1929. The pandora moth. Tech. Bull. U.S. Dep. Agric. 137. 19 pp.Google Scholar
Reid, R. W., Whitney, H. S., and Watson, J. A.. 1967. Reactions of lodgepine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 11151126.CrossRefGoogle Scholar
Rudinsky, J. A. 1962. The ecology of the Scolytidae. A. Rev. Ent. 7: 327348.CrossRefGoogle Scholar
Russell, C. E. and Berryman, A. A.. 1976. Host resistance to the fir engraver beetle. 1. Monoterpene composition of Abies grandis pitch blisters and fungus-infected wounds. Can. J. Bot. 54: 1418.CrossRefGoogle Scholar
Shrimpton, D. M. and Whitney, H. S.. 1968. Inhibition of growth of blue stain fungi by wood extractives. Can. J. Bot. 46: 757761.CrossRefGoogle Scholar
Stryer, L. 1975. Biochemistry. Freeman, San Francisco. 877 pp.Google Scholar
Wargo, P. M., Parker, J., and Houston, D. R.. 1972. Starch content in roots of defoliated sugar maple. Forest Sci. 18: 203204.Google Scholar
Webb, W. L. and Karchesy, J. J.. 1977. Starch content of Douglas-fir defoliated by the tussock moth. Can. J. Forest Res. 7: 186188.CrossRefGoogle Scholar
Wickman, B. E. 1963. Mortality and growth reduction of white fir following defoliation by the Douglas-fir tussock moth. Res. Pap. U.S. Forest Serv. PSW-7. 15 pp.Google Scholar
Wickman, B. E. 1978. Tree injury. pp. 66–77. in Brookes, M. H., Stark, R. W., and Campbell, R. W. (Eds.), The Douglas-fir Tussock Moth: A Synthesis. Tech. Bull. U.S. Dep. Agric. 1585. 338 pp.Google Scholar
Wong, B. L. and Berryman, A. A.. 1977. Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistant Abies grandis inoculated with Trichosporium symbioticum. Can. J. Bot. 55: 23582365.CrossRefGoogle Scholar
Wright, E. 1935. Trichosporium symbioticum, n. sp., a wood staining fungus associated with Scolytus ventralis. J. agric. Res. 50: 525538.Google Scholar