Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:57:38.890Z Has data issue: false hasContentIssue false

How do primary nutrients affect the performance and preference of forest tent caterpillars on trembling aspen?

Published online by Cambridge University Press:  02 April 2012

Meghan K. Noseworthy
Affiliation:
Biology Department, Concordia University, 7141 Sherbrooke Street W, Montréal, Quebec, Canada H4B 1R6
Emma Despland*
Affiliation:
Biology Department, Concordia University, 7141 Sherbrooke Street W, Montréal, Quebec, Canada H4B 1R6
*
1 Corresponding author (e-mail: despland@alcor.concordia.ca).

Abstract

Variation in leaf quality includes differences in both primary nutrients and secondary metabolites. Both of these factors can influence the feeding preference and resulting performance of herbivores in ways that are difficult to disentangle when comparing foliage from different sources. Our study was designed to assess the effects of the ratio of the primary nutrients in host-tree foliage, protein and sugar, on the performance and feeding behaviour of the forest tent caterpillar (Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae)). Fourth-stadium larvae were fed trembling aspen leaves (Populus tremuloides Michx (Salicaceae)) supplemented with casein, sucrose, or buffer only (control). No differences in taste responses to the three leaf types were detected. In a cafeteria situation, feeding behaviour over the short term was largely determined by the use of pheromone trails and hence depended on which leaf was contacted first. Over the longer term, caterpillars fed most on the control leaf and the sugar-supplemented leaf and discriminated against the protein-supplemented leaf. Sugar supplementation increased survivorship relative to the control treatment but slowed development and did not affect growth; protein supplementation decreased growth. These findings are consistent with past research comparing forest tent caterpillar performance and feeding preference on different host plants.

Résumé

La qualité nutritionnelle du feuillage dépend du contenu en nutriments primaires et en métabolites secondaires. Ces deux facteurs peuvent influencer le comportement alimentaire et la performance des insectes herbivores, et leur importance relative peut être difficile à déterminer lorsqu'on compare du feuillage de sources différentes. Notre étude évalue les effets du ratio des nutriments primaires, protéines et glucides, dans le feuillage sur le comportement alimentaire et la performance de la livrée des forêts (Malacosoma disstria Hübner (Lepidoptera : Lasiocampidae)). Des larves du quatrième stade ont été nourries avec des feuilles de peuplier faux-tremble (Populus tremuloides Michx (Salicacae)) enduites d'une solution de protéine, de sucre ou témoin. Aucune difference ne fut détectée entre les réponses gustatives aux trois types de feuillage. Lors d'un test cafétaria, le comportement alimentaire à court-terme était déterminé par l'utilisation de pistes de phéromone et donc par le premier contact avec une des trois feuilles. A plus long terme, les chenilles ont surtout consommé la feuille enduite de sucre et la feuille témoin, et ont évité la feuille enduite de protéine. L'augmentation du contenu en sucre a augmenté le taux de survie par rapport à la feuille témoin, mais a retardé le développement, sans effet sur la croissance. L'addition de protéine a diminué la croissance. Ces résultats sont consistents avec les travaux précédents sur le comportement alimentaire et la performance de la livrée sur des arbres hôtes différents.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addy, N.D. 1969. Rearing the forest tent caterpillar on an artificial diet. Journal of Economic Entomology, 62: 270271.CrossRefGoogle Scholar
Albert, P.J., and Bauce, E. 1994. Feeding preferences of fourth and sixth instar spruce budworm (Lepidoptera: Torticidae) larvae for foliage extracts from young and old balsam fir hosts. Environmental Entomology, 23: 645653.CrossRefGoogle Scholar
Bernays, E.A., and Chapman, R.F. 1994. Host-plant selection by phytophagous insects. Chapman and Hall, New York.CrossRefGoogle Scholar
Bernays, E.A., Chapman, R.F., and Singer, M.S. 2004. Changes in taste receptor cell sensitivity in a polyphagous caterpillar reflect carbohydrate but not protein imbalance. Journal of Comparative Physiology, 190A: 3948.Google Scholar
Bryant, J.P., Clausen, T.P., Reichardt, P.B., McCarthy, M.C., and Werner, R.A. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)). Oecologia, 73: 513517.CrossRefGoogle ScholarPubMed
Bucker, J., and Ballach, H.J. 1992. Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiologia Plantarum, 86: 512517.CrossRefGoogle Scholar
Coleman, M.D., Dickson, R.E., Isebrands, J.G., and Karnosky, D.F. 1995. Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 15: 593604.CrossRefGoogle ScholarPubMed
Despland, E., and Noseworthy, M. 2006. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar. Journal of Experimental Biology, 209: 13011309.CrossRefGoogle ScholarPubMed
Fitzgerald, T.D. 1995. The tent caterpillars. Cornell University Press, Ithaca, New York.Google Scholar
Fitzgerald, T.D., and Costa, J.T. 1986. Trail-based communication and foraging behavior of young colonies of forest tent caterpillars (Lepidoptera: Lasiocampidae). Annals of the Entomological Society of America, 79: 9991007.CrossRefGoogle Scholar
Fortin, M. 1994. Les stress environnementaux: effets indirects sur la biologie et le comportement alimentaire de la livrée des forêts (Malacosoma disstria Hbn.). M.Sc. thesis, Université du Québec à Montréal.Google Scholar
Fortin, M., and Mauffette, Y. 2001. Forest edge effects on the biological performance of the forest tent caterpillar (Lepidoptera: Lasiocampidae) in sugar maple stands. Ecoscience, 8: 164172.CrossRefGoogle Scholar
Fortin, M., Mauffette, Y., and Albert, P.J. 1997. The effects of ozone-exposed sugar maple seedlings on the biological performance and the feeding preference of the forest tent caterpillar (Malacosoma disstria Hbn.). Environmental Pollution, 97: 303309.CrossRefGoogle ScholarPubMed
Foss, L.K., and Rieske, L.K. 2003. Species-specific differences in oak foliage affect preference and performance of gypsy moth caterpillars. Entomologia Experimentalis et Applicata, 108: 8793.CrossRefGoogle Scholar
Hemming, J.D.C., and Lindroth, R.L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. Journal of Chemical Ecology, 25: 16871714.CrossRefGoogle Scholar
Hemming, J.D.C., and Lindroth, R.L. 2000. Effects of phenolic glycosides and protein on gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) performance and detoxication activities. Environmental Entomology, 29: 11081115.CrossRefGoogle Scholar
Hodson, A.C. 1941. An ecological study of the forest tent caterpillar, Malacosoma disstria Hbn, in Northern Minnesota. Minnesota Agricultural Experiment Station Technical Bulletin 148.Google Scholar
Holton, M.K., Lindroth, R.L., and Nordheim, E.V. 2003. Foliar quality influences tree–herbivore– parasitoid interactions: effects of elevated CO2O3, and plant genotype. Oecologia, 137: 233244.CrossRefGoogle Scholar
Hwang, S.Y., and Lindroth, R.L. 1997. Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia, 111: 99108.CrossRefGoogle ScholarPubMed
Kopper, B.J., and Lindroth, R.L. 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia, 134: 95103.CrossRefGoogle ScholarPubMed
Lee, K.P., Behmer, S.T., Simpson, S.J., and Raubenheimer, D. 2002. A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology, 48: 655665.CrossRefGoogle ScholarPubMed
Lindroth, R.L., and Bloomer, M.S. 1991. Biochemical ecology of the forest tent caterpillar: responses to dietary protein and phenolic glycosides. Oecologia, 86: 408413.CrossRefGoogle ScholarPubMed
Lindroth, R.L., Hsia, H.T.S., and Scriber, J.M. 1987. Seasonal patterns in phytochemistry of three Populus species. Biochemical Systematics and Ecology, 15: 681686.CrossRefGoogle Scholar
Lindroth, R.L., Kinney, K.K., and Platz, C.L. 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance. Ecology, 74: 763777.CrossRefGoogle Scholar
Lorenzetti, F. 1993. Performances relatives de la livrée des forêts Malacosoma disstria Hbn sur l'érable à sucre Acer saccharum Marsh sain et dépéri et sur le peuplier faux-tremble Populus tremuloïdes Michx. en relation avec la chimie foliaire. M.Sc. thesis, Université du Québec à Montréal.Google Scholar
Miller, W.E. 1987. Change in nutritional quality of detached aspen and willow foliage used as insect food in the laboratory. The Great Lakes Entomologist, 20: 4145.Google Scholar
Nicol, R.W., Arnasson, J.T., Helson, B., and Abou-Zaid, M.M. 1997. Effect of host and nonhost trees on the growth and development of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist, 129: 991999.CrossRefGoogle Scholar
Panzuto, M. 2001. La phagostimulation chez trois espèces de lèpidoptères. Ph.D. thesis, Université du Québec à Montréal.Google Scholar
Panzuto, M., Lorenzetti, F., Mauffette, Y., and Albert, P.J. 2001. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria. Journal of Chemical Ecology, 27: 19631978.CrossRefGoogle Scholar
Peters, M.I., and Despland, E. 2006. Plasticity in forest tent caterpillar collective foraging schedules. Ethology, 112: 521528.CrossRefGoogle Scholar
Raubenheimer, D. 1995. Problems with ratio analysis in nutritional studies. Functional Ecology, 9: 2129.CrossRefGoogle Scholar
Raubenheimer, D., and Simpson, S.J. 1997. Integrative models of nutrient balancing: application to insects and vertebrates. Nutritional Research Reviews, 10: 151179.CrossRefGoogle ScholarPubMed
Robison, D.J., and Raffa, K.F. 1996. Effects of constitutive and inducible traits of hybrid poplars on forest tent caterpillar feeding and population ecology. Forest Science, 43: 252267.Google Scholar
Salminen, J.P., and Lempa, K. 2002. Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology, 12: 203211.CrossRefGoogle Scholar
Schoonhoven, L.M. 1987. What makes a caterpillar eat? The sensory code underlying feeding behaviour. In Perspectives in chemoreception and behaviour. Edited by Chapman, R.F., Bernays, E.A., and Stoffolano, J.G.J.. Springer-Verlag, Berlin. pp. 6996.CrossRefGoogle Scholar
Schroeder, L.A. 1986. Changes in tree leaf quality and growth performance of lepidopteran larvae. Ecology, 67: 16281636.CrossRefGoogle Scholar
Sibly, R.M., Nott, H.M.R., and Fletcher, D.J. 1990. Splitting behaviour into bouts. Animal Behaviour, 39: 6369.CrossRefGoogle Scholar
Simpson, S.J., and Raubenheimer, D. 1993. A multilevel analysis of feeding behaviour: the geometry of nutritional decisions. Philosophical Transactions: Biological Sciences, 342: 381402.Google Scholar
Simpson, S.J., and Raubenheimer, D. 2000. The hungry locust. Advances in the Study of Behavior, 29: 144.CrossRefGoogle Scholar
Stockhoff, B.A. 1991. Starvation resistance of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae): tradeoffs among growth, body size, and survival. Oecologia, 88: 422429.CrossRefGoogle ScholarPubMed
Thompson, S.N. 2003. Trehalose — the insect ‘blood’ sugar. Advances in Insect Physiology, 31: 205285.CrossRefGoogle Scholar
van der Zee, B., Behmer, S.T., and Simpson, S.J. 2002. Food mixing strategies in the desert locust: effects of phase, distance between foods, and food nutrient content. Entomologia Experimentalis et Applicata, 103: 227237.CrossRefGoogle Scholar
Wright, G.A., Simpson, S.J., Raubenheimer, D., and Stevenson, P.C. 2003. The feeding behavior of the weevil, Exophthalmus jekelianus, with respect to the nutrients and allelochemicals in host plant leaves. Oikos, 100: 172184.CrossRefGoogle Scholar