Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T17:31:52.536Z Has data issue: false hasContentIssue false

IDENTIFICATION OF AN AGGREGATION PHEROMONE FOR PITYOGENES HOPKINSI (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

G. Birgersson
Affiliation:
Chemical Ecology, Göteborg University, SE-405 30 Göteborg, Sweden
M.J. Dalusky
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia, United States 30602
C.W. Berisford*
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia, United States 30602
*
1 Author to whom all correspondence should be addressed (E-mail: berisford@bugs.ent.uga.edu).

Abstract

The aggregation pheromone of Pityogenes hopkinsi Swaine was identified; it is a three-component mixture, comprising chalcogran, cis-verbenol, and ethyl dodecanoate. Ethyl dodecanoate is new as a bark beetle pheromone component. Chemical analyses (GC–MS) were made on hindgut extracts from unmated and mated males and mated females collected in the field during colonization of Pinus strobus L. (Pinaceae). Aerations from the naturally colonized logs were also analyzed to quantify the released amounts of the pheromone components, a necessary preliminary step to making up biologically relevant doses for field bioassay. Beetles reared from infested host material in the laboratory were introduced into logs of P. strobus, and the production and release of pheromone components in relation to attack phase and "mating status" were described. In general, unmated males increased their production of chalcogran and ethyl dodecanoate until females were admitted, after which production ceased. A field subtractive bioassay showed that chalcogran was the key pheromone component, synergized by different compounds for the two sexes. Females exhibited their strongest response to a mixture of chalcogran and ethyl dodecanoate, whereas cis-verbenol was the synergist for male response. Male-produced 1-hexanol had an inhibitory effect on male attraction to the aggregation-pheromone blend.

Résumé

La phéromone d’agrégation de Pityogenes hopkinsi Swaine a été identifiée; il s’agit d’un mélange de trois substances : le chalcogran, le cis-verbénol et le dodécanoate d’éthyle. Le dodécanoate d’éthy est nouveau comme composante de la phéromone de scolyte. Des analyses chimiques (GC–MS) ont été faites sur des extraits d’intestins postérieurs prélevés chez des mâles accouplés et des mâles non accouplés et chez des femelles accouplées capturées en nature durant la colonisation de Pinus strobus L. (Pinaceae). L’air provenant de billes colonisées naturellement a également été analysé pour évaluer la quantité de chacune des composantes de phéromone libérée afin de déterminer des doses appropriées à utiliser sur le terrain. Des scolytes issus de matériel infesté en laboratoire ont été mis en présence de billes de P. strobus et la production de phéromone de même que les taux d’émission de ses composantes ont été examinés en relation avec la phase d’attaque et le statut reproducteur. De façon générale, les mâles non accouplés augmentaient leur production de chalcogran et de dodécanoate d’éthyle jusqu’à l’arrivée de femelles, après quoi la production était interrompue. Une expérience soustractive en nature a démontré que le chalcogran est la composante essentielle de la phéromone, en synergie avec des composés différents chez les mâles et les femelles. Les femelles répondent au maximum au chalcogran en présence de dodécanoate d’éthyle, alors que le cis-verbénol est le synergiste chez les mâles. Le 1-hexanol émis par de mâles a un effet inhibiteur sur l’attirance des mâles vers le mélange de phéromones d’agrégation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berisford, C.W., Kulman, H.M., Pienkowski, R.L., Heikkenen, H.J. 1971. Factors affecting distribution and abundance of hymenopterous parasites of Ips spp. bark beetles in Virginia. (Coleoptera: Scolytidae). The Canadian Entomologist 103: 235–9CrossRefGoogle Scholar
Birgersson, G., Schlyter, F., Löfqvist, J., Bergström, G. 1984. Quantitative variation of pheromone components in the spruce bark beetle, Ips typographus, from different attack phases. Journal of Chemical Ecology 10: 1029–55CrossRefGoogle ScholarPubMed
Birgersson, G., DeBarr, G.L., de Groot, P., Dalusky, M.J., Pierce, H.D., Borden, J.H., Meyer, H., Francke, W., Espelie, K.E., Berisford, C.W. 1995. Pheromones in the white pine cone beetle, Conophthorus coniperda (Coleoptera; Scolytidae). Journal of Chemical Ecology 21: 143–67CrossRefGoogle ScholarPubMed
Blackman, M.W. 1915. Observations on the life history and habits of Pityogenes hopkinsi Swaine. pp. 1166in New York State College of Forestry, Syracuse University, Technical Publication 16Google Scholar
Borden, J.H. 1984. Aggregation pheromones. pp. 74139in Mitton, J.B., Sturgeon, K.G. (Eds), Bark beetles in North American conifers. Austin: University of Texas PressGoogle Scholar
Borden, J.H. 1985. Aggregation pheromones. pp. 257–85 in Kerkut, G.A., Gilbert, L.I. (Eds), Comprehensive insect physiology, biochemistry, and pharmacology. Oxford: Oxford University PressGoogle Scholar
Byers, J.A., Birgersson, G., Löfqvist, J., Bergström, G. 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle. Naturwissenschaften 75: 153–5CrossRefGoogle Scholar
Byers, J.A., Högberg, H-E, Unelius, R., Birgersson, G., Löfqvist, J. 1989. Structure-attraction activities of pheromone components and analogues of Pityogenes chalcographus (Coleoptera; Scolytidae): chalcogran stereoisomers and methyl (E, Z)-2,4-decadienoate isomers. Journal of Chemical Ecology 15: 685–95CrossRefGoogle Scholar
Byers, J.A., Birgersson, G., Löfqvist, J., Appelgren, M., Bergström, G. 1990. Isolation of pheromone synergists of the bark beetle, Pityogenes chalcographus, from complex insect–plant odors by fractionation and subtractive-combination bioassay. Journal of Chemical Ecology 16: 861–76CrossRefGoogle ScholarPubMed
Byers, J.A., Zhang, Q-H, Schlyter, F., Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetle. Naturwissenschaften 85: 557–61CrossRefGoogle Scholar
de Groot, P., DeBarr, G.L., Birgersson, G. 1998. Field bioassay of synthetic pheromones and host monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae). Environmental Entomology 27: 382–7CrossRefGoogle Scholar
Dobson, H.E.M. 1991. Analysis of flower and pollen volatiles. pp. 231–51 in Linskens, H.F., Jackson, J.F. (Eds), Modern methods of plant analysis, essentials oils and waxes. New series. Vol. 12. Berlin: Springer-VerlagCrossRefGoogle Scholar
Francke, W., Heemann, V., Gerken, B., Renwick, J.A.A., Vité, J.P. 1977. 2-Ethyl-1,6-dioxaspiro[4.4]nonane, principal aggregation pheromone in Pityogenes chalcographus. Naturwissenschaften 64: 590–1CrossRefGoogle Scholar
Francke, W., Bartels, J., Meyer, H., Schroder, F., Kohnle, U., Baader, E., Vité, J.P. 1995. Semiochemicals from bark beetles: new results, remarks, and reflections. Journal of Chemical Ecology 21: 1043–63CrossRefGoogle ScholarPubMed
Garland, W.A., Powell, M.L. 1981. Quantitative selected ion monitoring (QSIM) of drugs and/or metabolites in biological matrices. Journal of Chromatographic Science 19: 392434CrossRefGoogle ScholarPubMed
Klimetzek, D., Francke, W. 1980. Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols in Ips species. Experientia (Basel) 36: 1343–5CrossRefGoogle Scholar
Klimetzek, D., Bartels, J., Francke, W. 1989. Das pheromone-System des Bunten Ulmen-bastkäfers, Pteleobius vittatus (F.) (Col.: Scolytidae). Journal of Applied Entomology 107: 518–23CrossRefGoogle Scholar
Kovats, E. 1958. Gas-chromatographische charakterisierung organischer verbindungen. 1. Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helvetica Chemica Acta 41: 1915–32CrossRefGoogle Scholar
Lindström, M., Norin, T., Birgersson, G., Schlyter, F. 1989. Variation in enantiomeric composition of α-pinene in Norway spruce, and its effect on the production of verbenols by Ips typographus in the field. Journal of Chemical Ecology 15: 541–8CrossRefGoogle Scholar
McLafferty, F.W., Stauffer, D.B. 1989. Wiley/PBM registry of mass spectral data. New York: John Wiley & SonsGoogle Scholar
National Board of Standards 1990. NBS/EPA/NIH mass spectral database. Gaithersburg: National Institute of Standards and TechnologyGoogle Scholar
Renwick, J.A.A., Pitman, G.B., Vité, J.P. 1976. 2-Phenylethanol isolated from a bark beetle. Naturwissenschaften 63: 198CrossRefGoogle Scholar
Schlyter, F., Birgersson, G. 1999. Forest beetles. pp. 113–48 in Hardie, J., Minks, A. (Eds), Pheromones of non-lepidopteran insects associated with agricultural plants. Wallingford: Commonwealth Agricultural Bureaux InternationalGoogle Scholar
Schlyter, F., Löfqvist, J., Jakus, R. 1995. Green leaf volatiles and verbenone modify attraction of European Tomicus, Hylurgops, and Ips bark beetles. pp. 2944in Hain, F.P., Salom, S.S., Ravlin, W.F., Payne, T.L., Raffa, K.F. (Eds), Behavior, population dynamics, and control of forest insects. Wooster: Ohio Agricultural Research and Development Center, Ohio State UniversityGoogle Scholar
Schurig, V., Weber, R. 1984. Use of glass and fused silica open tubular columns for the separation of structural, configural and optical isomers by selective complexation gas chromatography. Journal of Chromatography 289: 321–32CrossRefGoogle Scholar
Swaine, J.M. 1915. A new species of Pityogenes. pp. 810in New York State College of Forestry, Syracuse University, Technical Publication 16Google Scholar
Teale, S.A., Webster, F.X., Zhang, A., Lanier, G.L. 1991. Lanierone: a new pheromone component from Ips pini (Coleoptera: Scolytidae) in New York. Journal of Chemical Ecology 17: 1159–76CrossRefGoogle Scholar
Wilson, I.M., Borden, J.H., Gries, R., Gries, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Chemical Ecology 22: 1861–75CrossRefGoogle ScholarPubMed
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar