Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:14:58.912Z Has data issue: false hasContentIssue false

IMPACT OF FEEDING BY LEPTOGLOSSUS OCCIDENTALS (HEMIPTERA: COREIDAE) ON THE MAJOR STORAGE RESERVES OF MATURE DOUGLAS-FIR (PINACEAE) SEEDS

Published online by Cambridge University Press:  31 May 2012

Sarah L. Bates
Affiliation:
Centre for Environmental Biology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
John H. Borden*
Affiliation:
Centre for Environmental Biology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Anne Savoie
Affiliation:
Centre for Environmental Biology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Suzanne E. Blatt
Affiliation:
Centre for Environmental Biology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Cameron G. Lait
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Allison R. Kermode
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Robb G. Bennett
Affiliation:
Seed Pest Management, B.C. Forest Service, 7380 Puckle Road, R.R. 3, Saanichton, British Columbia, Canada V8M 1W4
*
1 Author to whom all corresponding should be addressed (E-mail: borden@sfu.ca).

Abstract

In laboratory experiments adults and nymphs of the western conifer seed bug, Leptoglossus occidentalis Heidemann, were allowed to feed on mature seeds of Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco. Weight-loss measurements and scanning electron microscopy provided strong supporting evidence for the use of simple radiographic diagnosis as a method of classifying feeding damage to seeds into four categories: light (greater than two thirds of seed contents remaining), moderate (one third to two thirds of seed contents remaining), severe (less than one third of seed contents remaining), and extreme (seed empty). Scanning electron micrographs showed the apparent depletion of lipid and protein storage reserves which was verified by quantitative analyses that showed significant loss of lipid and buffer-insoluble (crystalloid) storage protein from seeds in all damage categories. The amount of buffer-soluble (matrix) protein was reduced in seeds from the severe and extreme damage categories. The increase in buffer-soluble protein observed in lightly damaged seeds was likely due to the solubilization of crystalloid storage protein, as a result of its breakdown into smaller peptides. Our results suggest that through the action of both lipases and proteases, L. occidentalis can have a serious impact on the major storage reserves of conifer seeds. Moreover, our data suggest that L. occidentalis feeds in a different manner than the laceration and flushing method found in other seed-feeding Hemiptera.

Résumé

Au cours d’expériences en laboratoire, nous avons mis des adultes et des nymphes de la punaise Leptoglossus occidentalis Heidemann (Hemiptera : Coreidae) en présence de graines à maturité du Sapin de Douglas, Pseudotsuga menziesii (Mirbel) Franco. Les résultats de pesées et l’utilisation du microscope électronique à balayage ont démontré que de simples radiographies suffisent à évaluer les dommages causés aux graines et à classer ces dommages en quatre catégories : léger (plus de deux tiers du contenu intact), modéré (un à deux tiers du contenu intact), grave (moins d’un tier du contenu intact) et extrême (graine vidée de son contenu). Les micrographies au microscope électronique à balayage ont permis de constater la diminution des réserves de lipides et de protéines, ce qui a pu être vérifié par des analyses quantitatives qui ont mis en évidence la perte significative des lipides et des protéines de réserve insolubles dans un tampon (cristal loïdes) dans toutes les graines endommagées. La quantité de protéines solubles dans un tampon (matrice) étaii réduite dans les graines des catégories à dommages graves ou extrêmes. L’augmentation des protéines solubles observée dans les graines légèrement endommagées est probablement attribuable à la solubilisaiion des protéines cristalloïdes de réserve qui se divisent en peptides plus petits. Nos résultats semblent indiquer que L. occidentalis, par l’action de ses lipases et protéases, peut avoir un impact important sur les principales réserves nutritives des graines de conifères. Nos données indiquent en outre que L. occidentalis utilise un mode d’alimentation particulier, différent de la méthode de lacération/vidange utilisée par d’autres hémiptères granivores.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.B., McAllan, J.W. 1958. Pectinase in certain insects. !Canadian Journal of Zoology 36: 305–8Google Scholar
Alam, A. 1992. A method for formulation of protein assay. Annals of Biochemistry 208: 121–6Google Scholar
Allen, R.D., Arnott, H.J., Nessler, C.L. 1984. Effects of the embryonic axis and exogenous growth regulators on sunflower cotyledon storage protein mobilization. Physiologia Plantarum 62: 375–83Google Scholar
Bates, S.L. 1999. Impact of the western conifer seed bug, Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae), on yield, seed storage reserves and seedling vigour in Douglas-fir. Master of Pest Management thesis, Simon Fraser University, Burnaby, BCGoogle Scholar
Bates, S.L., Borden, J.H., Kermode, A.R., Lait, C.G., Bennett, R.G., Summers, D. 1999. Germination and seedling vigour in seeds fed on by Leptoglossus occidentalis (Hemiptera: Coreidae). Seed and Seedling Extension Topics 11. In pressGoogle Scholar
Bewley, J.D., Black, M. 1994. Seeds: physiology of development and germination. 2nd ed. New York: Plenum PressGoogle Scholar
Blatt, S.E., Borden, J.H. 1996. Distribution and impact of Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae) in seed orchards in British Columbia. The Canadian Entomologist 128: 1065–76CrossRefGoogle Scholar
Blatt, S.E., Borden, J.H. 1998. Interactions between the Douglas-fir seed chalcid, Megastigmus spermatrophus Wachtl. (Hymenoptera: Torymidae), and the western conifer seed bug, Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae). The Canadian Entomologist 130: 775–82Google Scholar
Bronner, R. 1975. Simultaneous demonstration of lipids and starch in plant tissue. Stain Technology 50: 14Google Scholar
Campbell, B.C., Shea, P.J. 1990. A simple staining technique for assessing feeding damage by Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae) on cones. The Canadian Entomologist 122: 963–8Google Scholar
Ching, T.M. 1965. Metabolic and ultrastructural changes in germinating Douglas-fir seeds. Plant Physiology 40(Suppl.): viiiGoogle Scholar
Ching, T.M. 1966. Compositional changes of Douglas-fir seeds during germination. Plant Physiology 41: 1313–19Google Scholar
Day, R.W., Quinn, G.P. 1989. Comparison of treatments after analysis of variance in ecology. Ecological Monographs 59: 433–63Google Scholar
Dombrosky, S.A., Schowalter, T.D. 1988. Inventory monitoring for estimating impact of insects on seed production in a Douglas-fir seed orchard in western Oregon. Journal of Economic Entomology 81: 281–5Google Scholar
Feir, D., Beck, S.D. 1961. Salivary secretions of Oncopeltus fasciatus (Hemiptera: Lygaeidae). Annals of the Entomological Society of America 54: 316Google Scholar
Fisher, D.B. 1968. Protein staining for ribboned Epon sections for light microscopy. Histochemie 16: 92–6Google Scholar
Gifford, D.J., Greenwood, J.S., Bewley, J.D. 1982. Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds. Plant Physiology 69: 1471–8CrossRefGoogle ScholarPubMed
Green, M.J., McLeod, J.K., Misra, S. 1991. Characterization of Douglas-fir protein body composition by SDS–PAGE and electron microscopy. Plant Physiology and Biochemistry 29: 4955Google Scholar
Halmer, P., Bewley, J.D., Thorpe, T.A. 1978. Degradation of the endosperm cell walls of Lactuca sativa L. cv. Grand Rapids – timing of mobilisation of soluble sugars, lipids and phytate. Planta 139: 18Google Scholar
Hedlin, A.F., Yates, H.O., Tovar, O.C., Ebel, B.H., Koerber, T.W., Merkel, E.P. 1981. Cone and seed insects of North American conifers. Canadian Forestry Service, USDA Forest Service, and Secretaria de Agricultura y Recursos Hidraulicos MexicoGoogle Scholar
Hori, K. 1973. Digestive carbohydrases in the salivary gland and midgut of several phytophagous bugs. Comprehensive Biochemistry and Physiology 50B: 145–51Google Scholar
Kermode, A.R. 1996. Mechanisms of intracellular protein transport and targeting in plant cells. Critical Reviews in Plant Sciences 15: 285423Google Scholar
Koerber, T.W. 1963. Leptoglossus occidentalis (Hemiptera: Coreidae), a newly discovered pest of coniferous seed. Annals of the Entomological Society of America 56: 229–34Google Scholar
Krugman, S.L., Koerber, T.W. 1969. Effect of cone feeding by Leptoglossus occidentalis on ponderosa pine seed development. Forest Science 15: 104–11Google Scholar
Laurema, S., Varis, A.L., Miettinen, H. 1985. Studies on enzymes in the salivary glands of Lygus rugulipennis (Hemiptera, Miridae). Insect Biochemistry 15: 211–24Google Scholar
Ma, R., Reese, J.C., Black, W.C., Bramel-Cox, P. 1990. Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae). Journal of Insect Physiology 36: 507–12Google Scholar
Miles, P.W. 1968. Insect secretions in plants. Annual Review of Phytopathology 6: 137–64Google Scholar
Miles, P.W. 1972. The saliva of Hemiptera. Advances in Insect Physiology 9: 183255Google Scholar
Miles, P.W., Taylor, G.S. 1994. “Osmotic pump” feeding by coreids. Entomologia Experimentalis et Applicata 73: 163–73Google Scholar
Owens, J.N., Colangeli, A.M., Morris, S.J. 1991. Factors affecting seed set in Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Botany 69: 229–38Google Scholar
Owens, J.N., Morris, S.J., Misra, S. 1993. The ultrastructural, histochemical, and biochemical development of the post-fertilization megagametophyte and zygotic embryo of Pseudotsuga menziesii. Canadian Journal of Forest Research 23: 816–27CrossRefGoogle Scholar
Pasek, J.E., Dix, M.E. 1988. Insect damage to conelets, second-year cones and seeds of ponderosa pine in southeastern Nebraska. Journal of Economic Entomology 81: 1681–90Google Scholar
SAS Institute Inc. 1988. SAS/STAT© user's guide, release 6.03 edition. Cary: SAS Institute Inc.Google Scholar
Schowalter, T.D., Sexton, J.M. 1990. Effect of Leptoglossus occidentalis (Heteroptera: Coreidae) on seed development of Douglas-fir at different times during the growing season in western Oregon. Journal of Economic Entomology 83: 1485–6Google Scholar
Schowalter, T.D., Harvety, M.L., Koerber, T.W. 1985. Cone and seed insects in Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, seed orchards in the western United States: distribution and relative impact. The Canadian Entomologist 117: 1223–30Google Scholar
Strong, F.E. 1970. Physiology of injury caused by Lygus hesperus. Journal of Economic Entomology 63: 803–14Google Scholar