Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:02:09.287Z Has data issue: false hasContentIssue false

The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages

Published online by Cambridge University Press:  02 April 2012

Christopher M. Buddle*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Julien Beguin
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Elise Bolduc
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Alida Mercado
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Tara E. Sackett
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
R. Duncan Selby
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Hirondelle Varady-Szabo
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Rebecca M. Zeran
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
1Corresponding author (e-mail: chris.buddle@mcgill.ca).

Abstract

For over three decades, the importance of taxon sampling curves for comparative biodiversity studies has been repeatedly stated. However, many entomologists (both within Canada and worldwide) continue to publish studies without standardizing their data to take sampling effort into account. We present a case study to illustrate the importance of such standardization, using the collection of spiders (Araneae) by pitfall traps as model data. Data were analyzed using rarefaction to represent one example of a taxon sampling curve, and by a variety of traditional diversity indices to describe alpha diversity. Raw species richness and single-index diversity measures (Shannon–Wiener, Simpson's, and Fisher's α) provided contradictory results. Rarefied species richness standardized to the number of individuals collected enabled more accurate comparisons of diversity and revealed when sampling was insufficient. Focusing on arthropods occurring in forested ecosystems, we also examined the use of taxon sampling curves in current literature by reviewing 133 published articles from 14 journals. Only 26% of the published articles in our review used a taxon sampling curve, and raw species richness and the Shannon–Wiener index of diversity were the most commonly used estimates. There is clearly a need to modify how alpha diversity is measured and compared for arthropod biodiversity studies. We recommend the abandonment of both raw species richness and single-index measures of diversity, and reiterate the need to use rarefaction or a related technique that allows for meaningful comparisons of species richness while taking into account sampling effort.

Résumé

Au cours des trois dernières décennies, l'importance de l'utilisation de courbes de raréfaction de la diversité (i.e., « Taxon sampling curves ») dans les études comparatives de la biodiversité, à été souligné à maintes reprises. Néanmoins, plusieurs entomologistes (que se soit au Canada ou à l'échelle mondiale) continuent de publier des études ou les données n'ont pas été standardisées pour l'effort d'échantillonnage. Pour démontrer l'importance d'une telle standardisation, nous présentons ici les résultats d'un étude de cas, où des araignées (Araneae) collectées avec pièges fausses représentent les données pour le model. Ces données ont été analysées à l'aide d'indice de raréfaction pour représenter un exemple de courbes de raréfaction de la diversité et d'une variété d'indices plus traditionnel pour décrire la diversité « alpha ». La richesse spécifique et les mesures d'indice de diversité unique (Indice de Shannon–Wiener, Indice de Simpson et test Fisher) ont mené à des résultats contradictoires. La diversité des espèces, quand standardisé par le nombre d'individu collecté, a permit une comparaison plus précise de la diversité et a démontrée les cas où l'effort d'échantillonnage était insuffisant. Mettant l'emphase sur les arthropodes forestiers, nous avons aussi examiné l'utilisation des courbes de raréfaction de la diversité dans la littérature courante en révisant 133 publications de 14 journaux. Cette étude a révélé que seulement 26 % des articles révisés font usage de courbes de raréfaction de la diversité alors que la richesse spécifique et l'indice de Shannon–Wiener sont les estimations les plus couramment utilisées. Manifestement, les méthodes de mesure et de comparaison de la diversité alpha requiert des modifications. Nous recommandons l'abandon des mesures de diversité basées sur un index unique, et nous réitérons la nécessité d'utiliser des courbes de raréfaction ou autre technique apparentée afin de permettre des comparaisons de diversité d'espèce valables qui tiennent compte de l'effort d'échantillonnage.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beisel, J.N., Usseglio-Polatera, P., Bachmann, V., and Moreteau, J.C. 2003. A comparative analysis of evenness index sensitivity. International Review of Hydrobiology, 88: 315.CrossRefGoogle Scholar
Belaoussoff, S., Kevan, P.G., Murphy, S., and Swanton, C. 2003. Assessing tillage disturbance on assemblages of ground beetles (Coleoptera: Carabidae) by using a range of ecological indices. Biodiversity and Conservation, 12: 851882.CrossRefGoogle Scholar
Brzustowski, J. 2003. The rarefaction calculator [online]. Available from http://www2.biology.ualberta.ca/jbrzusto/rarefact.php [cited 14 April 2004].Google Scholar
Buddle, C.M. 2004. Literature survey – published papers on forest arthropod biodiversity research [online]. Available from http://www.nrs.mcgill.ca/buddle/BiodiversityLiterature.html [cited 9 September 2004].Google Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Colwell, RK. 2001. EstimateS: statistical estimation of species richness and shared species from samples. Version 6.0b1 Beta [computer program]. User's guide and application available from http://viceroy.eeb.uconn.edu/estimates [cited 14 April 2004].Google Scholar
Colwell, R.K., and Coddington, J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B Biological Sciences, 345: 101118.Google ScholarPubMed
Danks, H.V. 1988. Insects of Canada. A brief from the Biological Survey of Canada (Terrestrial Arthropods). Document Series No. 1. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Estrada, A., and Coates-Estrada, R. 2002. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodiversity and Conservation, 11: 19031918.CrossRefGoogle Scholar
Finnamore, A.T. 1996. The advantages of using arthropods in ecosystem management. A brief from the Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Gandhi, K.J.K., Spence, J.R., Langor, D.W., and Morgantini, L.E. 2001. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biological Conservation, 102: 131141.CrossRefGoogle Scholar
Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Gotelli, N.J., and Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7.0 [computer program]. Acquired Intelligence Inc. and Kesey-Bear. Available from http://homepages.together.net/~gentsmin/ecosim.htm [cited 9 September 2004].Google Scholar
Hammond, H.E., Langor, D.W., and Spence, J.R. 2004. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research, 34: 119.CrossRefGoogle Scholar
Hindmarch, T.D., and Reid, M.L. 2001. Thinning of mature lodgepole pine stands increases scolytid bark beetle abundance and diversity. Canadian Journal of Forest Research, 31: 15021512.CrossRefGoogle Scholar
Hurlbert, S.H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology, 52: 577586.CrossRefGoogle Scholar
Kim, K.C. 1993. Biodiversity, conservation and inventory: why insects matter. Biodiversity and Conservation, 2: 191214.CrossRefGoogle Scholar
Koivula, M., and Niemelä, J. 2003. Gap felling as a forest harvesting method in boreal forests: responses of Carabid beetles (Coleoptera, Carabidae). Ecography, 26: 179187.CrossRefGoogle Scholar
Komonen, A. 2003. Hotspots of insect diversity in boreal forests. Conservation Biology, 17: 976981.CrossRefGoogle Scholar
Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, P.M. et al. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature (London), 391: 7275.CrossRefGoogle Scholar
Lindberg, N., and Persson, T. 2004. Effects of long-term nutrient fertilization and irrigation on the microarthropod community in a boreal Norway spruce stand. Forest Ecology and Management, 188: 125135.CrossRefGoogle Scholar
Longino, J.T., Coddington, J.A., and Colwell, R.K. 2002. The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83: 689702.CrossRefGoogle Scholar
Magurran, A. 2004. Measuring biological diversity. Blackwell Publishing, Malden, Massachusetts.Google Scholar
McAleece, N. 1997. Biodiversity pro. The Natural History Museum and The Scottish Association For Marine Science. Available from http://www.sams.ac.uk/activities/downloads/software/bdpro.zip [cited 9 September 2004].Google Scholar
Moreno, C.E., and Halffter, G. 2001. On the measure of sampling effort used in species accumulation curves. Journal of Applied Ecology, 38: 487490.CrossRefGoogle Scholar
Mulder, C.P.H., Koricheva, J., Huss-Danell, K., Hogberg, P., and Joshi, J. 1999. Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters, 2: 237246.CrossRefGoogle Scholar
Niemelä, J., Langor, D., and Spence, J.R. 1993. Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology, 7: 551561.CrossRefGoogle Scholar
Olszewski, T.D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104: 377387.CrossRefGoogle Scholar
Rainio, J., and Niemelä, J. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Bio-diversity and Conservation, 12: 487506.CrossRefGoogle Scholar
Sanders, H.L. 1968. Marine benthic diversity: a comparative study. American Naturalist, 102: 243282.CrossRefGoogle Scholar
Simberloff, D.S. 1972. Properties of the rarefaction diversity measurement. American Naturalist, 106: 414418.CrossRefGoogle Scholar
Simberloff, D.S. 1978. Use of rarefaction and related methods in ecology. In Biological data in water pollution assessment: quantitative and statistical analysis. Edited by Dickson, K.L., Garins, J. Jr., and Livingston, R.J.. American Society for Testing and Materials, Easton, Maryland. pp. 150165.Google Scholar
Speight, M.R., Hunter, M.D., and Watt, A.D. 1999. Ecology of insects: concepts and applications. Blackwell Science, Malden, Maryland.Google Scholar
Washington, H.G. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 18: 653694.CrossRefGoogle Scholar
Wilson, E.O. 1992. The diversity of life. W.W. Norton & Company, New York.Google Scholar
Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia, 50: 296301.CrossRefGoogle ScholarPubMed
Work, T.T., and McCullough, D.G. 2000. Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan. Environmental Entomology, 29: 884900.CrossRefGoogle Scholar
Work, T.T., Shorthouse, D.P., Spence, J.R., Volney, W.J.A., and Langor, D. 2004. Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. Canadian Journal of Forest Research, 34: 417430.CrossRefGoogle Scholar