Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T17:44:54.282Z Has data issue: false hasContentIssue false

INFLUENCE OF GENETIC CHANGES AND OTHER VARIABLES ON THE ENCAPSULATION OF PARASITES BY HYPHANTRIA CUNEA

Published online by Cambridge University Press:  31 May 2012

R. F. Morris
Affiliation:
Maritimes Forest Research Centre, Canadian Forestry Service, Fredericton, New Brunswick

Abstract

The percentage encapsulation of its common insect parasites by Hyphantria cunea Drury was measured in natural populations in New Brunswick and Nova Scotia over a period of 17 years, and the variables affecting encapsulation were studied in laboratory experiments. Percentage encapsulation varied with the species, stage, and activity of the parasite, and the stage and genetic strain of the host. Differences in encapsulation from area to area and particularly from year to year were closely related to short-term changes in the genetic constitution of the host population resulting from natural selection pressures. The application of these results to biological control and to population modeling is discussed briefly.

Résumé

L’auteur mesura le pourcentage d’encapsulation des insectes parasites communs de Hyphantria cunea Drury en populations naturelles au Nouveau-Brunswick et en Nouvelle-Écosse durant 17 ans, et il étudia les variables affectant l’encapsulation lors d’expériences au laboratoire. Le pourcentage d’encapsulation variait selon les espèces le stade de développement, l’activité du parasite, et le stade et la lignée génétique de l’hôte. Les différences d’encapsulation de région en région et particulièrement d’année en année étaient en relation étroite avec les changements à court terme de la constitution génétique de la population des hôtes résultant de pressions naturelles de sélection. L’auteur discute brièvement de la façon d’appliquer ces résultats à la lutte biologique et au mode de formation des populations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, B. R. and Ball, J. C.. 1966. The evolution of host suitability in a polyphagous parasite with special reference to the role of parasite egg encapsulation. Ann. ent. Soc. Am. 59: 4245.CrossRefGoogle Scholar
Bogovac, M. 1956. Hyposoter fugitivus fugitivus Say, a primary parasite of the fall webworm. “Plant Protection”, No. 37, pp. 2946. Belgrade.Google Scholar
Bronskill, J. F. 1960. The capsule and its relation to the embryogenesis of the ichneumonid parasitoid Mesoleius tenthredinis Morl. in the larch sawfly, Pristiphora erichsoni (Htg.) (Hymenoptera: Tenthredinidae). Can. J. Zool. 38: 769775.CrossRefGoogle Scholar
Dustan, A. G. 1921. Some notes on the habits of Campoplex pilosulus, a primary parasite of the fall webworm. Proc. N.S. ent. Soc. 1920: 8188.Google Scholar
Jackson, C. G., Bryan, D. E., and Patana, R.. 1970. Development of Hyposoter pilosulus in the salt-marsh caterpillar. J. econ. Ent. 63: 299300.CrossRefGoogle Scholar
Lange, R. and Bronskill, J. F.. 1964. Reactions of Musca domestica L. to parasitism by Alphaereta pallipes (Say) with special reference to host diet and parasitoid toxin. Z. Parasitenk. 25: 193210.CrossRefGoogle Scholar
Morris, R. F. 1967 a. Influence of parental food quality on the survival of Hyphantria cunea. Can. Ent. 99: 2433.CrossRefGoogle Scholar
Morris, R. F. 1967 b. Factors inducing diapause in Hyphantria cunea. Can. Ent. 99: 522529.CrossRefGoogle Scholar
Morris, R. F. 1971. Observed and simulated changes in genetic quality in natural populations of Hyphantria cunea. Can. Ent. 103: 893906.CrossRefGoogle Scholar
Morris, R. F. and Bennett, C. W.. 1967. Seasonal population trends and extensive census methods for Hyphantria cunea. Can. Ent. 99: 917.CrossRefGoogle Scholar
Morris, R. F. and Fulton, W. C.. 1970 a. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent Soc. Can., No. 70. 60 pp.Google Scholar
Morris, R. F. and Fulton, W. C.. 1970 b. Heritability of diapause intensity in Hyphantria cunea and correlated fitness responses. Can. Ent. 102: 927938.CrossRefGoogle Scholar
Salt, G. 1963. The defense reactions of insects to metazoan parasites. Parasitology 53: 527642.CrossRefGoogle ScholarPubMed
Swaine, R. B., Green, W., and Portman, R.. 1938. Notes on oviposition and sex ratio in Hyposoter pilosulus Prov. J. Kans. ent. Soc. 11: 79.Google Scholar
Tadic, M. D. 1958 a. Apanteles hyphantriae Riley, an egg parasite of the fall webworm. Proc. X int. Congr. Ent., Vol. 4, pp. 859861.Google Scholar
Tadic, M. D. 1958 b. Malacosoma neustria L., a new European host of the American fall webworm parasite — Mericia ampelus Wlk. Trans. I int. Conf. Insect Path. and Biol. Control, Praha., pp. 361365.Google Scholar
Thompson, W. R. 1953. The tachinid parasites of Archips cerasivorana Fitch. (2) Eusisyropa blanda O.S. Can. Ent. 85: 393404.CrossRefGoogle Scholar
Timberlake, P. H. 1912. A study of the biology of Limnerium validum (Cresson). U.S. Dep. Agric., Bur. Ent., Tech. Ser. 19, Part V, pp. 7192.Google Scholar
Tothill, J. D. 1922. The natural control of the fall webworm in Canada. Bull. Can. Dep. Agric. (n.s.), No. 3.Google Scholar