Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T18:02:20.535Z Has data issue: false hasContentIssue false

INFLUENCE OF PLANT QUALITY ON INTERACTIONS BETWEEN THE APHID PARASITOID EPHEDRUS CALIFORNICUS BAKER (HYMENOPTERA: APHIDIIDAE) AND ITS HOST, ACYRTHOSIPHON PISUM (HARRIS) (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

B. Stadler
Affiliation:
Department of Animal Ecology I, University of Bayreuth, D-95440, Bayreuth, Germany
M. Mackauer*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1 Author to whom reprint requests should he sent.

Abstract

We determined variations in selected life-history parameters in a tritrophic system that consisted of a plant (broad bean, Vicia faba L.), an aphid (pea aphid, Acyrthosiphon pisum), and an aphid parasitoid (Ephedras californicus). We manipulated plant and aphid quality by growing bean plants in a high- and a low-quality nutrient solution for three generations. Pea aphids adapted to reduced nutrient availability by differentially allocating resources to somatic and gonadal growth across generations. On low-quality plants, time from birth to adult increased and dry mass decreased. The number of sclerotized embryos was correlated with adult dry mass. By contrast, in E. californicus, variations in dry mass, rate of development, and number of ovarial eggs did not suggest transgenerational adaptations to resource quality as measured by aphid size. The number of mature eggs was dependent on female age. Development time varied with parasitoid sex and was independent of aphid stage at the time of death. In the low-quality treatment, males survived on average longer than females eclosing from the same kinds of hosts.

Aphids and their parasitoids have evolved flexible life-history strategies in response to variations in plant quality. Pea aphids adapted to qualitatively variable resources by optimizing the balance between somatic and gonadal investment across successive generations. But E. californicus responded to low host quality at the level of the individual, rather than across generations; the trade-off pattern was influenced by the host’s growth potential after parasitization.

Résumé

Nous avons étudié les variations de variables démographiques particulières dans un système tritrophique constitué d’une plante (la fève Vicia faba L.), d’un puceron (le Puceron du pois, Acyrthosiphon pisum) et d’un parasitoïde du puceron (Ephedrus californicus). Nous avons modifié la qualité des plants et des pucerons en cultivant des fèves dans des solutions riches et des solutions pauvres en éléments nutritifs durant trois générations. Les pucerons se sont adaptés à une nourriture appauvrie en modifiant l’équilibre entre leurs investissements somatique et gonadique pendant plusieurs générations. Sur des plants de mauvaise qualité, l’intervalle entre la naissance et l’âge adulte des pucerons a augmenté et la masse sèche a diminué. Le nombre d’embryons sclérifiés était relié à la masse sèche des adultes. En revanche, chez le parasitoïde E. californicus, ni les variations de la masse sèche ou de la vitesse du développement, ni le nombre d’oeufs dans l’ovaire n’indiquaient l’existence d’adaptations évolutives à la qualité des ressources (fonction de la taille des pucerons). Le nombre d’oeufs à maturité dépendait de l’âge des femelles. La durée du développement était fonction du sexe du parasitoïde et indépendante du stade du puceron au moment de la mort. Sur les plants de mauvaise qualité, les mâles ont survécu plus longtemps en moyenne que les femelles écloses sur le même type d’hôte.

Les pucerons et leurs parasitoïdes ont élaboré des stratégies démographiques flexibles en réaction aux variations de la qualité des plantes. Les Pucerons du pois se sont adaptés à des ressources de qualité variable en optimisant l’équilibre entre leurs investissements somatique et gonadique pendant plusieurs générations successives. En revanche, les parasitoïdes E. californicus ont réagi individuellement à la piètre qualité de l’hôte et cet ajustement n’a donc pas affecté plusieurs générations; ce système d’échange est influencé par le potentiel de croissance de l’hôte après l’arrivée du parasite.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, B., and Mackauer, M.. 1990. Oviposition and host-feeding patterns in Aphelinus asychis (Hymenoptera: Aphelinidae) at different aphid densities. Ecological Entomology 15: 916.CrossRefGoogle Scholar
Bloem, K.A., and Duffey, S.S.. 1990. Effect of protein type and quantity on growth and development of larval Heliothis zea and Spodoptera exigua and the endoparasitoid Hyposoter exiguae. Entomologia Experimentalis et Applicata 54: 141148.CrossRefGoogle Scholar
Boethel, D.J., and Eikenbary, R.D. (Eds.). 1986. Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood, Chichester, UK. 224 pp.Google Scholar
Brough, C.N., and Dixon, A.F.G.. 1989. Reproductive investment and the interovariole differences in embryo development and size in virginoparae of the vetch aphid, Megoura viciae. Entomologia Experimentalis et Applicata 52: 215220.CrossRefGoogle Scholar
Campbell, B.C., and Duffey, S.S.. 1979. Tomatine and parasitic wasps: Potential incompatibility of plant antibiosis and biological control. Science 205: 700702.CrossRefGoogle ScholarPubMed
Chow, F.J., and Mackauer, M.. 1986. Host discrimination and larval competition in the aphid parasite Ephedrus californicus. Entomologia Experimentalis et Applicata 41: 243254.CrossRefGoogle Scholar
Cohen, M.B., and Mackauer, M.. 1987. Intrinsic rate of increase and temperature coefficients of the aphid parasite Ephedrus californicus Baker (Hymenoptera: Aphidiidae). The Canadian Entomologist 119: 231237.CrossRefGoogle Scholar
Dixon, A.F.G. 1987. Parthenogenetic reproduction and the rate of increase in aphids. pp. 269–287 in Minks, A.K., and Harrewijn, P. (Eds.), Aphids. Their Biology, Natural Enemies and Control. World Crop Pests, Vol. 2A. Elsevier, Amsterdam. xx + 450 pp.Google Scholar
Fox, L.R., Letoumeau, D.K., Eisenbach, J., and Van Nouhuys, S.. 1990. Parasitism rates and sex ratios of a parasitoid wasp: Effects of herbivore and plant quality. Oecologia 83: 414419.CrossRefGoogle ScholarPubMed
Gange, A.C., and Brown, V.K.. 1989. Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81: 3842.CrossRefGoogle ScholarPubMed
Gomez, J.M., and Zamora, R.. 1994. Top-down effects in a tritrophic system: Parasitoids enhance plant fitness. Ecology 75: 10231030.CrossRefGoogle Scholar
Henkelman, D.H. 1979. A Study of Weight Variation in Aphidius smithi (Hymenoptera: Aphidiidae), a Parasite of the Pea Aphid, Acyrthosiphon pisum (Homoptera: Aphididae). M.Sc. thesis, Simon Fraser University, Burnaby, British Columbia. xiv + 130 pp.Google Scholar
Hoagland, D.H., and Amon, D.I.. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 132.Google Scholar
Karowe, D.N., and Schoonhoven, L.M.. 1992. Interactions among three trophic levels: The influence of host plant on performance of Pieris brassicae and its parasitoid, Cotesia glomerata. Entomologia Experimentalis et Applicata 62: 241251.CrossRefGoogle Scholar
Kouamé, K.L., and Mackauer, M.. 1991. Influence of aphid size, age, and behaviour on host choice by the parasitoid wasp Ephedrus californicus: A test of host-size models. Oecologia 88: 197203.CrossRefGoogle ScholarPubMed
Kouamé, K.L. 1992. Influence of starvation on development and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum. The Canadian Entomologist 124: 8795.CrossRefGoogle Scholar
Leather, S.R. 1987. Generation specific trends in aphid life history parameters. Journal of Applied Entomology 104: 8795.CrossRefGoogle Scholar
Mackauer, M. 1990. Host discrimination and larval competition in solitary endoparasitoids. pp. 41–62 in Mackauer, M., Ehler, L.E., and Roland, J. (Eds.), Critical Issues in Biological Control. Intercept, Andover, Hants, UK. xvii + 330 pp.Google Scholar
Mackauer, M., and Finlayson, T.. 1967. The hymenopterous parasites (Hymenoptera: Aphidiidae et Aphelinidae) of the pea aphid in eastern North America. The Canadian Entomologist 99: 10511082.CrossRefGoogle Scholar
Mackauer, M., and Kambhampati, S.. 1984. Reproduction and longevity of cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), parasitized by Diaeretiella rapae (Hymenoptera: Aphidiidae). The Canadian Entomologist 116: 16051610.CrossRefGoogle Scholar
Norusis, M.J. 1986. SPSS/PC+ User's Guide for the IBM PC/XT/AT. McGraw-Hill, Chicago, IL. 438 pp.Google Scholar
Price, P.W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels. pp. 11–30 in Boethel, D.J., and Eikenbary, R.D. (Eds.), Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood, Chichester, UK. 224 pp.Google Scholar
Price, P.W., Bouton, C.E., Gross, P., MacPheron, B.A., Thompson, J.N., and Weiss, A.E.. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 4165.CrossRefGoogle Scholar
SAS. 1985. SAS User's Guide: Basics. Version 5 Edition. SAS Institute, Cary, NC. xx + 1290 pp.Google Scholar
Schoenly, K., Beaver, R.A., and Heumier, T.A.. 1991. On the trophic relations of insects: A food-web approach. American Naturalist 137: 597638.CrossRefGoogle Scholar
Sequeira, R., and Mackauer, M.. 1992 a. Nutritional ecology of an insect host-parasitoid association: The pea aphid–Aphidius ervi system. Ecology 73: 183189.CrossRefGoogle Scholar
Sequeira, R., and Mackauer, M.. 1992 b. Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosiphon pisum. Evolutionary Ecology 6: 3444.CrossRefGoogle Scholar
Sequeira, R., and Mackauer, M.. 1993. The nutritional ecology of a parasitoid wasp, Ephedrus californicus Baker (Hymenoptera: Aphidiidae). The Canadian Entomologist 125: 423430.CrossRefGoogle Scholar
Service, P. 1984. The distribution of aphids in response to variation among individual host plants: Uroleucon rudbeckiae (Homoptera: Aphididae) and Rudbeckia laciniata (Asteraceae). Ecological Entomology 9: 321328.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman, San Francisco, CA. xviii + 859 pp.Google Scholar
Stadler, B. 1992. Physiological responses of Uroleucon jaceae (L.) to seasonal changes in the quality of its host plant Centaurea jacea L.: Multilevel control of adaptations to the life cycle of the host. Oecologia 91: 273280.CrossRefGoogle Scholar
Stadler, B., Weisser, W.W., and Houston, A.I.. 1994. Defense reactions in aphids: The influence of state and future reproductive success. Journal of Animal Ecology 63: 419430.CrossRefGoogle Scholar
Tscharntke, T. 1992. Cascade effects among four trophic levels: Bird predation on galls affects density-dependent parasitism. Ecology 73: 16891698.CrossRefGoogle Scholar
van Emden, H.F., and Bashford, M.A.. 1969. A comparison of the reproduction of Brevicoryne brassicae and Myzus persicae in relation to soluble nitrogen concentrations and leaf age (leaf position) in the Brussels sprout plant. Entomologia Experimentalis et Applicata 12: 351364.CrossRefGoogle Scholar
Vinson, S.B., and Iwantsch, G.F.. 1980. Host regulation by insect parasitoids. Quarterly Review of Biology 55: 143165.CrossRefGoogle Scholar
Völkl, W. 1992. Aphids or their parasitoids: Who actually benefits from ant-attendance? Journal of Animal Ecology 61: 273281.CrossRefGoogle Scholar
Walters, K.F.A., Brough, C., and Dixon, A.F.G.. 1988. Habitat quality and reproductive investment in aphids. Ecological Entomology 13: 337345.CrossRefGoogle Scholar
Walters, K.F.A., and Dixon, A.F.G.. 1983. Migratory urge and reproductive investment in aphids: Variation within clones. Oecologia 58: 7075.CrossRefGoogle ScholarPubMed
Ward, S.A., and Dixon, A.F.G.. 1982. Selective resorption of aphid embryos and habitat changes relative to life-span. Journal of Animal Ecology 51: 859864.CrossRefGoogle Scholar
Ward, S.A., Wellings, P.W., and Dixon, A.F.G.. 1983. The effect of reproductive investment on pre-reproductive mortality in aphids. Journal of Animal Ecology 52: 305313.CrossRefGoogle Scholar
Wellings, P.W., and Dixon, A.F.G.. 1983. Physiological constraints on the reproductive activity of the sycamore aphid: The effect of developmental experience. Entomologia Experimentalis et Applicata 34: 227232.CrossRefGoogle Scholar
Wellings, P.W., Leather, S.R., and Dixon, A.F.G.. 1980. Seasonal variation in reproductive potential: A programmed feature of aphid life cycles. Journal of Animal Ecology 49: 975985.CrossRefGoogle Scholar
Whitham, T.G., Maschinski, J., Larson, K.C., and Paige, K.N.. 1991. Plant responses to herbivory: The continuum from negative to positive and underlying physiological mechanisms. pp. 227–256 in Price, P.W., Lewinsohn, T.M., Fernandes, G.W., and Benson, W.W. (Eds.), Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. J. Wiley and Sons, New York, NY. 639 pp.Google Scholar