Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:44:50.806Z Has data issue: false hasContentIssue false

Influence of plant-hardiness zone, shoot length, and crown class on the incidence of gouting by the balsam woolly adelgid on balsam fir

Published online by Cambridge University Press:  02 April 2012

Bertrand Guillet
Affiliation:
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
Andrew Morrison
Affiliation:
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
Drew Carleton
Affiliation:
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
Don Ostaff
Affiliation:
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada E3B 5A3, and Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1350 Regent Street South, Fredericton, New Brunswick, Canada E3B 2G6
Dan Quiring*
Affiliation:
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
*
1 Corresponding author (e-mail: quiring@unb.ca).

Abstract

We collected midcrown branches of balsam fir, Abies balsamea (L.) Mill. (Pinaceae), at six different sites located in five different plant-hardiness zones, along a north–south transect in New Brunswick, Canada, to evaluate the effect of plant-hardiness zone, crown class (overstory versus understory), and shoot length during the previous 10 years on the annual incidence of gouting by the balsam woolly adelgid, Adelges piceae (Ratzeburg) (Homoptera: Adelgidae). Site, crown class, and their interaction, along with the square of shoot length, explained 78% of the variation in gouting. Variations in gouting attributed to plant-hardiness zone were probably primarily due to variation in mean January temperature: at each site, the mean January temperature was positively and closely related to the mean level of gouting. The level of gouting was consistently higher on trees in the understory than on those in the overstory. Shoot length was parabolically related to the proportion of shoots with gout. The parabolic relationship between shoot size and the level of gouting is similar to that previously reported for galling adelgids, and suggests that gouting by A. piceae may be greatest on trees with an intermediate growth rate.

Résumé

Nous avons récolté des branches de sapin baumier, Abies balsamea (L.) Mill. (Pinaceae), au niveau du milieu de la cime dans six sites différents situés dans cinq zones distinctes de rusticité végétale suivant un transect nord-sud au Nouveau-Brunswick, Canada, afin d'évaluer les effets de la zone de rusticité végétale, du type de cime (étage dominant vs sous-étage) et de la longueur des pousses durant les 10 dernières années sur l'incidence annuelle de renflements provoqués par le puceron lanigère du sapin, Adelges piceae (Ratzeburg) (Homoptera: Adelgidae). Le site, le type de cime et leur interaction, de même que la (longueur des pousses)2 expliquent 78% de la variation des renflements. La variation des renflements attribuée aux zones de rusticité végétale est probablement due surtout aux variations de la température moyenne en janvier; la température moyenne de janvier à chacun des sites est en corrélation positive et étroite avec la densité moyenne de renflements. L'incidence des renflements est toujours plus importante sur les arbres du sous-étage que sur ceux de l'étage dominant. Il y a une relation parabolique entre la longueur des pousses et la proportion des pousses porteuses de renflements. La relation parabolique entre la taille des pousses et l'incidence des renflements est semblable à celle signalée antérieurement pour la formation de galles d'adelgidés et laisse croire que la formation des renflements par A. piceae pourrait être maximale sur les arbres à taux de croissance intermédiaire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balch, R.E. 1934. The balsam woolly aphid, Adelges piceae (Ratz.) in Canada. Scientific Agriculture, 14: 374383.Google Scholar
Balch, R.E. 1952. Studies on the balsam woolly aphid, Adelges piceae (Ratz.) (Homoptera: Phylloxeridae) and its effects on balsam fir, Abies balsamea (L.) Mill. Canadian Department of Agriculture Publication No. 867.Google Scholar
Brower, A.E. 1947. The balsam woolly aphid in Maine. Journal of Economic Entomology, 40: 689694.CrossRefGoogle ScholarPubMed
Björkman, C. 1998. Opposite, linear and nonlinear effects of plant stress on a galling aphid. Scandinavian Journal of Forest Researcg, 13: 177183. doi:10.1080/02827589809382974.CrossRefGoogle Scholar
Carroll, W.J., and Bryant, D.G. 1960. A review of the balsam woolly aphid in Newfoundland. Forestry Chronicl, 36: 279293.CrossRefGoogle Scholar
Chrystal, R.N. 1926. The genus Dreyfusia in Britain and its relation to the silver fir. Philosophical Transactions of the Royal Society B Biological Sciences, 214: 2961. doi:10.1098/rstb.1926.0002.Google Scholar
Flaherty, L., and Quiring, D. 2009. Plant module size and dose of gall induction stimulus influence gall induction and subsequent galler performance. Oikos, 117: 16011608.CrossRefGoogle Scholar
Greenbank, D.O. 1970. Climate and the ecology of the balsam woolly aphid. The Canadian Entomologist, 102: 546578. doi:10.4039/Ent102546-5.CrossRefGoogle Scholar
Hartling, L.K. 2004. A qualitative assessment of the distribution of balsam woolly adelgid on balsam fir in New Brunswick, as detected in 2004. Forest Pest Management, New Brunswick Department of Natural Resources, Fredericton, New Brunswick.Google Scholar
Hudak, J., and Singh, P. 1970. Incidence of Armillaria root rot in balsam fir infested by balsam woolly aphid. Canadian Plant Discovery Survey, 50: 99101.Google Scholar
Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54: 187211. doi:10.2307/1942661.CrossRefGoogle Scholar
Martineau, R. 1984. Insects harmful to forest trees. Minister of Supply and Services Canada, Ottawa, Ontario.Google Scholar
McKinnon, M.L., Quiring, D.T., and Bauce, E. 1998. Influence of resource availability on growth and foliar chemistry within and among young white spruce trees. EcoScience, 5: 295305.CrossRefGoogle Scholar
McKinnon, M.L., Quiring, D.T., and Bauce, E. 1999. Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid. Functional Ecology, 13: 859867. doi:10.1046/j.1365-2435.1999.00376.x.CrossRefGoogle Scholar
Milne, G.R. 1990. An economic analysis of the treatment of balsam woolly adelgid in Newfoundland. Information Report N-X-277, Forestry Canada, Newfoundland and Labrador Region, St. John's, Newfoundland.Google Scholar
Page, G. 1975. The impact of balsam woolly aphid damage on balsam fir stands in Newfoundland. Canadian Journal of Forest Research, 5: 195209.CrossRefGoogle Scholar
Price, P.W. 1991. The plant vigor hypothesis and herbivore attack. Oikos, 62: 244251. doi:10.2307/3545270.CrossRefGoogle Scholar
Quiring, D.T., and McKinnon, M.L. 1999. Why does early-season herbivory affect subsequent budburst? Ecology, 80: 17241735. doi:10.1890/0012-9658(1999)080[1724:WDESHA]2.0.CO;2.CrossRefGoogle Scholar
Quiring, D., Flaherty, L., Johns, R., and Morrison, A. 2006. Variable effects of plant module size on abundance and performance of galling insects. In Galling arthropods and their associates: ecology and evolution. Edited by Ozaki, K., Yukawa, J., Ohgushi, T., and Price, P.W.. Springer-Verlag, Sapporo, Japan. pp. 189198.CrossRefGoogle Scholar
Quiring, D., Ostaff, D., Hartling, L., Lavigne, D., Moore, K., and DeMerchant, I. 2008. Temperature and plant hardiness zone influence distribution of balsam woolly adelgid damage in Atlantic Canada. Forestry Chronicle, 84: 558562.CrossRefGoogle Scholar
Schneider-Orelli, O., Schaeffer, C., and Wiesmann, R. 1929. Untersuchungen über die Weisstannenlaus Dreyfusia nusslini C.B. in der Schweiz. Mitteilungen der schweizerischen Centralanstalt für das forstliche Versuchswesen, 15: 191242.Google Scholar
Sokal, R.R., and Rolf, F.J. 1982. Biometry: the principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and Company, New York.Google Scholar
Sopow, S.L., Shorthouse, J.D., Strong, W., and Quiring, D.T. 2003. Evidence for long-distance, chemical gall induction by an insect. Ecology Letters, 6: 102105. doi:10.1046/j.1461-0248.2003.00410.x.CrossRefGoogle Scholar
Sprugel, D.G., Hinckley, T.M., and Schaap, W. 1991. The theory and practice of branch autonomy. Annual Review of Ecology and Systematics, 22: 309334. doi:10.1146/annurev.es.22. 110191.001521.CrossRefGoogle Scholar