Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:05:12.014Z Has data issue: false hasContentIssue false

INHERITANCE OF GREGARIOUS AND SOLITARY OVIPOSITION IN MUSCIDIFURAX RAPTORELLUS KOGAN AND LEGNER (HYMENOPTERA: PTEROMALIDAE)

Published online by Cambridge University Press:  31 May 2012

E.F. Legner
Affiliation:
University of California, Division of Biological Control, Riverside, California, USA92521

Abstract

Inheritance of gregarious or solitary oviposition in Muscidifurax raptorellus Kogan and Legner involves two phases: (1) the female parasitoid expresses either trait shortly after mating, the magnitude of which is apparently determined by the male genome; and (2) the trait is then apparently fixed into a genome of her offspring who demonstrate it in the virgin state. In the first phase, less than one-half the magnitude of behavioral expression is shown, full expression occurring in the F1 diploid virgin hybrid. In matings with hybrids produced from subsequent backcrosses, more than one-half of the behavior is expressed shortly after mating. Traits related to gregarious oviposition (number parasitoids developed per host and total progeny) were also similarly initially expressed and subsequently inherited. A polygenic mode of inheritance is apparent, with ≥3-22 genes estimated. The extranuclear influences prior to inheritance may involve microorganisms and/or chemicals (enzymes) present in hymenopteran seminal fluid. Natural selection in this system should be accelerated by males causing the expression of a portion of the quantity of heritable behavior within the same generation.

Résumé

L’hérédité du comportement de ponte solitaire et grégaire parmi les Muscidifurax raptorellus Kogan et Legner comprend deux étapes : (1) la femelle parasitoïde acquiert l’un ou l’autre trait directement du mâle avec lequel elle s’accouple : elle montre ceci très peu de temps après l’accouplement; et (2) ce trait caratéristique est ensuite fixé dans le génome de ses descendants apparemment chez lesquels on peut l’observer à l’état virginal. Dans la première étape, représentée par les mâles haploïdes, seulemment la moitié environ de la magnitude de l’expression du comportement est en évidence, l’expression du comportement dans sa totalité apparaît dans l’hybride vierge diploïde. Une mode polygénique d’hérédité est apparente, avec une estimation ≥3-22 des genes. Il est possible que cette phase extranucléaire de l’hérédité puisse inclure des microorganismes ou des éléments chimiques (enzymes) présents dans le fluide séminal des hyménoptères. La sélection naturelle dans ce système devrait être accélérée par les mâles à l’origine de l’expression de la moitié environ de la quantité du comportement héréditaire dans chaque génération.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J., and Kiger, J.A. Jr., 1984. Modern genetics, 2nd ed. The Benjamin/Cummings Publ. Co., Inc., Menlo Park, CA. 923 pp.Google Scholar
Beale, G., and Knowles, J.. 1978. Extranuclear genetics. Edward Arnold, London. 142 pp.Google Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 1526.CrossRefGoogle Scholar
Castle, W.E. 1921. An improved method of estimating the number of genetic factors concerned in cases of blending inheritance. Science 54: 223.CrossRefGoogle ScholarPubMed
Corbet, S.A. 1985. Insect chemosensory responses: a chemical legacy hypothesis. Ecol. Ent. 10: 143153.CrossRefGoogle Scholar
Cosmides, L.M., and Tooby, J.. 1981. Cytoplasmatic inheritance and intragenomic conflict. J. Theor. Biol. 89: 83129.CrossRefGoogle Scholar
Dobzhansky, T. 1941. Genetics and the origin of species, 2nd ed. Columbia Univ. Press, New York. 428 pp.Google Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 141.CrossRefGoogle Scholar
Faulkner, B.M., and Arlett, C.F.. 1964. The “minute” cytoplasmic variant of Aspergillus nidulans. Heredity 19: 6373.CrossRefGoogle Scholar
Fleming, J.G.W., and Summers, M.D.. 1986. Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus DNA suggestive of integrated and extrachromosomal polydnavirus DNAs. J. Virol. 57: 552562.CrossRefGoogle ScholarPubMed
Goodenough, U. 1984. Genetics, 3rd. ed. Saunders College Publ., Philadelphia/New York. 894 pp.Google Scholar
Harrison, G.A., and Owen, J.J.T.. 1964. Studies on the inheritance of human skin colour. Ann. Hum. Genet. 28: 2737.CrossRefGoogle ScholarPubMed
Hey, J., and Gargiulo, M.K.. 1985. Sex-ratio changes in Leptopilina heterotoma in response to breeding. J. Heredity 76: 209211.CrossRefGoogle Scholar
Jones, D.F. 1917. Dominance of linked factors as a means of accounting for heterosis. Genetics 2: 466479.CrossRefGoogle ScholarPubMed
Kawooya, J.K. 1983. Electrophoretic discrimination of species of the Muscidifurax (Hymenoptera: Pteromalidae) complex. Ph.D dissertation, Univ. of Illinois, Urbana. 113 pp.Google Scholar
Kogan, M., and Legner, E.F.. 1970. A biosystematic revision of the genus Muscidifurax (Hymenoptera: Pteromalidae) with descriptions of four new species. Can. Ent. 102: 12681290.CrossRefGoogle Scholar
Krell, P.J., and Stoltz, D.B.. 1979. Unusual baculovirus of the parasitoid wasp, Apanteles melanoscelus: isolation and preliminary characterization. J. Virol. 29: 11181130.CrossRefGoogle ScholarPubMed
Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541553.CrossRefGoogle ScholarPubMed
Legner, E.F. 1967. Behavior changes the reproduction of Spalangia cameroni, S. endius, Muscidifurax raptor, and Nasonia vitripennis (Hymenoptera: Pteromalidae) at increasing fly host densities. Ann. ent. Soc. Am. 60: 819826.CrossRefGoogle Scholar
Legner, E.F. 1969. Reproductive isolation and size variation in the Muscidifurax raptor complex. Ann. ent. Soc. Am. 62: 382385.CrossRefGoogle Scholar
Legner, E.F. 1979. Prolonged culture and inbreeding effects on reproductive rates of two pteromalid parasites of muscoid flies. Ann. ent. Soc. Am. 72: 114118.CrossRefGoogle Scholar
Legner, E.F. 1983. Broadened view of Muscidifurax parasites associated with endophilous synanthropic flies and sibling species in the Spalangia endius complex. Proc. Calif. Mosq. & Vect. Contr. Assoc. 51: 4748.Google Scholar
Legner, E.F. 1985. Natural and induced sex ratio changes in populations of thelytokous Muscidifurax uniraptor (Hymenoptera: Pteromalidae). Ann. ent. Soc. Am. 78: 398402.CrossRefGoogle Scholar
Legner, E.F. 1987. Transfer of thelytoky to arrhenotokous Muscidifurax raptor Girault & Sanders (Hymenoptera: Pteromalidae). Can. Ent. 119: 265271.CrossRefGoogle Scholar
Legner, E.F., Moore, I., and Olton, G.S.. 1976. Tabular keys and biological notes to the common parasitoids of synanthropic Diptera breeding in accumulated animal wastes. Ent. News 87: 113144.Google Scholar
Legner, E.F., and Olton, G.S.. 1968. Activity of parasites from Diptera: Musca domestica, Stomoxys calcitrans, and species of Fannia, Muscina, and Ophyra. II. At sites in the Eastern Hemisphere and Pacific area. Ann. ent. Soc. Am. 61: 13061314.CrossRefGoogle ScholarPubMed
Legner, E.F., and Olton, G.S.. 1971. Distribution and relative abundance of dipterous pupae and their parasitoids in accumulations of domestic animal manure in the southwestern United States. Hilgardia 40: 505535.CrossRefGoogle Scholar
Leventhal, E. 1968. The sex ratio in Drosophila bifasciata; its experimental transmission. J. Invert. Path. 11: 170183.CrossRefGoogle ScholarPubMed
Levine, L. 1973. Biology of the gene. The C.V. Mosby Co., St. Louis. 358 pp.Google Scholar
Mudd, A.R., Fisher, C., and Smith, M.C.. 1982. Volatile hydrocarbons in the Dufour's gland of the parasite Nemeritis canescens (Grav.) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 8: 10351042.CrossRefGoogle Scholar
Oishi, K., Poulsen, D.F., and Williamson, D.L.. 1984. Virus-mediated change in clumping properties of Drosophila SR spiroplasmas. Curr. Microbiol. 10: 153158.CrossRefGoogle Scholar
Poulson, D.F., and Sakaguchi, B.. 1961. Nature of the “sex ratio” agent in Drosophila. Science 133: 14891490.CrossRefGoogle ScholarPubMed
Preer, J.R., Preer, L.B., and Jurand, A.. 1974. Kappa and other endosymbionts in Paramedium aurelia. Bact. Rev. 38: 113163.CrossRefGoogle Scholar
Richmond, R.C., and Senior, A.. 1981. Esterase 6 (EC 3.1.1.1.) of Drosophila melanogaster: kinetics of transfer to females, decay in females and male recovery. J. Insect. Physiol. 27: 849854.CrossRefGoogle Scholar
Sager, R., and Ramanis, Z.. 1963. The particulate nature of nonchromosomal genes in Chlamydomonas. Proc. Nat. Acad. Sci. U.S.A. 50: 260268.CrossRefGoogle ScholarPubMed
Skinner, S.W. 1982. Maternally inherited sex ratio in the parasitoid wasp Nasonia vitripennis. Science 215: 11331134.CrossRefGoogle ScholarPubMed
Skinner, S.W. 1985. Son-killer: a third extrachromosomal factor affecting the sex-ratio. Genetics 109: 745759.CrossRefGoogle ScholarPubMed
Smith, J.R., and Rubenstein, I.. 1973. The development of ‘senescence’ in Podospora anserina. J. Gen. Microbiol. 76: 283296.CrossRefGoogle Scholar
Sonneborn, T.M. 1959. Kappa and related particles in Paramecium. Adv. Virus Res. 6: 229356.CrossRefGoogle Scholar
Stanley-Samuelson, D.W., and Loher, W.. 1986. Prostaglandins in insect reproduction. Ann. ent. Soc. Am. 79: 841853.CrossRefGoogle Scholar
Steel, R.G.D., and Torrie, J.H.. 1960. Principles and procedures of statistics with special reference to the biological sciences. McGraw-Hill Book Co., Inc., New York. 481 pp.Google Scholar
Stoltz, D.B., Guzo, D., and Cook, D.. 1986. Studies on polydnavirus transmission. Virology 155: 120131.CrossRefGoogle ScholarPubMed
Stoltz, D.B., and Vinson, S.B.. 1977. Baculovirus-like particles in the reproductive tracts of female parasitoid wasps. II: The genus Apanteles. Can. J. Microbiol. 23: 2837.CrossRefGoogle Scholar
Stoltz, D.B., and Vinson, S.B.. 1979. Viruses and parasitism in insects. Adv. Virus Res. 24: 125171.CrossRefGoogle ScholarPubMed
Stoltz, D.B., Vinson, S.B., and Mackinnon, E.A.. 1976. Baculovirus-like particles in the reproductive tracts of female parasitoid wasps. Can. J. Microbiol. 22: 10131023.CrossRefGoogle ScholarPubMed
Templeton, A.R. 1982. The prophecies of parthenogenesis. pp. 75101in Dingle, H., and Hagmann, I.P. (Eds.), Evolution and genetics of life histories. Springer-Verlag, New York/Berlin.Google Scholar
Thoday, J.M., and Boam, T.B.. 1956. A possible effect of the cytoplasm recombination in Drosophila melanogaster. J. Genet. 54: 456461.CrossRefGoogle Scholar
van den Assem, J., and Povel, G.D.. 1973. Courtship behavior of some Muscidifurax species (Hym., Pteromalidae): a possible example of a recently evolved ethological isolating mechanism. Netherlands J. Zool. 23: 465487.CrossRefGoogle Scholar
Vinson, S.B., and Stoltz, D.B.. 1986. Cross-protection experiments with two parasitoid (Hymenoptera: Ichneumonidae) viruses. Ann. ent. Soc. Am. 79: 216218.CrossRefGoogle Scholar
Webster, R.P., and Carde, R.T.. 1984. The effects of mating, exogenous juvenile hormone and a juvenile hormone analogue on pheromone titre, calling and oviposition in the omnivorous leafroller moth (Platynota stultana). J. Insect Physiol. 30: 113118.CrossRefGoogle Scholar
Werren, J.H., Skinner, S.W., and Charnov, E.L.. 1981. Paternal inheritance of a daughterless sex ratio factor. Nature 293: 467468.CrossRefGoogle Scholar
Werren, J.H., Skinner, S.W., and Huger, A.M.. 1986. Male-killing bacteria in a parasitic wasp. Science 231: 990992.CrossRefGoogle Scholar
Williamson, D.L., and Poulson, D.F.. 1979. Sex ratio organisms (Spiroplasmas) of Drosophila. The Mycoplasmas 3: 175208.CrossRefGoogle Scholar
Wright, S. 1952. The genetics of quantitative variability. pp. 5–41 in Reeve, E.C.R., and Waddington, C.H. (Eds.), Quantitative Inheritance. Agric. Res. Council Her Majesty's Stationery Office, London. 151 pp.Google Scholar