Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T00:06:38.588Z Has data issue: false hasContentIssue false

INSECT GROWTH REGULATORS: PROMISING EFFECTS ON CITRUS THRIPS (THYSANOPTERA: THRIPIDAE)

Published online by Cambridge University Press:  31 May 2012

T.G. Grout
Affiliation:
Department of Entomology, University of California, Riverside, California, USA 92521
J.G. Morse
Affiliation:
Department of Entomology, University of California, Riverside, California, USA 92521

Abstract

Several insect growth regulators (IGRs) were tested against citrus thrips, Scirtothrips citri (Moulton), in Munger cells. In all larval tests, the IGRs worked by preventing the thrips from developing to the pupal or adult stages. After exposing adult females to IGR residues, numbers of emerging progeny were reduced, although these results did not always rank the IGRs in the same order as the larval tests. The most effective IGR tested was UC84572, followed by cyromazine. Avermectin B1, a streptomycete-derived lactone, did not show IGR activity but acted as an insecticide and controlled the thrips at a much lower percentage active ingredient.

Résumé

Nous avons étudié les effets de plusieurs hormones de croissance sur le thrips des agrumes, Scirtothrips citri (Moulton), à l’aide de cellules Munger. Tous les tests effectués sur les stades larvaires ont montré que les hormones empêchent les larves du thrips de se développer jusqu’au stade pupale ou adulte. Après avoir exposé des femelles adultes à des residues d’hormones de croissance, nous avons observé une réduction du nombre d’adultes F1. Ces résultats n’ont pas toujours été du même ordre que ceux des tests effectués sur les stades larvaires. L’hormone la plus efficace fut UC84572, suivit par cyromazine. L’avermectine B1, un dérivé streptomycétique du lactone, a montré aucune activité hormonale, et a plutôt agit comme insecticide, controllant le nombre de thrips avec un pourcentage beaucoup moins élevé d’ingrédient actif.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beavers, J.B., and Oldfield, G.N.. 1970. Portable platforms for watering leaves in acrylic cages containing small leaf-feeding arthropods. J. econ. Ent. 63: 312313.CrossRefGoogle Scholar
Bellows, T.S. Jr., Morse, J.G., Hadjidemetriou, D.G., and Iwata, Y.. 1985. Residual toxicity of four insecticides used for control of citrus thrips (Thysanoptera: Thripidae) on three beneficial species in a citrus agroecosystem. J. econ. Ent. 78: 681686.CrossRefGoogle Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 142.CrossRefGoogle Scholar
El-Banhawy, E.M. 1980. Comparison between the response of the predacious mite Amblyseius brazilli and its prey Tetranychus desertorum to the different IGRs methoprene and dimilin (Acari: Phytoseiidae, Tetranychidae). Acarologia 21(2): 221227.Google Scholar
Elmer, H.S. 1981. Citrus thrips showing resistance to dimethoate. Citrograph 66: 245.Google Scholar
Finney, D.J. 1971. Probit analysis. Cambridge University Press, Cambridge. 333 pp.Google Scholar
Grout, T.G. 1985. Binomial and sequential sampling of Euseius tularensis (Acari: Phytoseiidae), a predator of citrus red mite (Acari: Tetranychidae) and citrus thrips (Thysanoptera: Thripidae). J. econ. Ent. 78: 567570.CrossRefGoogle Scholar
Lofgren, C.S., and Williams, D.F.. 1982. Avermectin B1: a highly potent inhibitor of reproduction by queens of the red imported fire ant. J. econ Ent. 75: 798803.CrossRefGoogle Scholar
Morse, J.G., and Bailey, J.B. (Eds.). 1984. 1984–1986 treatment guide for California citrus crops. Univ. Calif. Div. agric. Sci. Leafl. 2903.Google Scholar
Morse, J.G., Bellows, T.S., and Iwata, Y.. 1986. Technique for evaluating residual toxicity of pesticides to motile insects. J. econ. Ent. 79: 281283.CrossRefGoogle Scholar
Munger, F. 1942. A method for rearing citrus thrips in the laboratory. J. econ. Ent. 35: 373375.CrossRefGoogle Scholar
Peleg, B.A. 1983. Effect of a new insect growth regulator, RO 13-5223, on hymenopterous parasites of scale insects. Entomophaga 28(4): 367372.CrossRefGoogle Scholar
Peleg, B.A., and Gothill, S., 1980. Effect of the juvenoid altosid on the development of three hymenopterous parasites. Entomophaga 25(3): 323327.CrossRefGoogle Scholar
Robb, K.L., and Parrella, M.P.. 1984. Sublethal effects of two insect growth regulators applied to larvae of Liriomyza trifolii (Diptera: Agromyzidae). J. econ. Ent. 77: 12881292.CrossRefGoogle Scholar
Staal, G.B. 1975. Insect growth regulators with juvenile hormone activity. Annu. Rev. Ent. 20: 417460.CrossRefGoogle ScholarPubMed
Tanigoshi, L.K., and Griffiths, H.J.. 1982. A new look at biological control of citrus thrips. Citrograph 67: 157158.Google Scholar
Wright, J.E. 1984. Biological activity of avermectin B1 against the boll weevil (Coleoptera: Curculionidae). J. econ. Ent. 77: 10291032.CrossRefGoogle Scholar