Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:10:14.506Z Has data issue: false hasContentIssue false

INTERACTIONS BETWEEN BACILLUS THURINGIENSIS BERLINER AND APANTELES FUMIFERANAE VIER. (HYMENOPTERA: BRACONIDAE), A PARASITOID OF THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (CLEM.) (LEPIDOPTERA: TORTRICIDAE)1

Published online by Cambridge University Press:  31 May 2012

Vincent Nealis
Affiliation:
Forestry Canada, Ontario Region, Great Lakes Forestry Centre, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Kees van Frankenhuyzen
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interactions between Bacillus thuringiensis Berliner and Apanteles fumiferanae Viereck as mortality factors of the spruce budworm, Choristoneura fumiferana (Clemens), were investigated by placing parasitized and nonparasitized budworm larvae on foliage with and without spray deposits of a commercial formulation of B. thuringiensis. The effect of larval age (and, thus, the timing of spray applications) was examined by using peak third-instar and peak fourth-instar larvae. We demonstrated that parasitized larvae are more likely to survive exposure to B. thuringiensis because they feed less than non-parasitized larvae and are thus less likely to acquire a lethal dose of the bacterium. Bacillus thuringiensis nevertheless reduced parasitoid populations by 50–60% by killing their hosts before parasitoid emergence. This negative impact of B. thuringiensis on parasitoid survival was decreased when exposure of budworm larvae to spray deposits was delayed from peak third to peak fourth instar. The enhanced survival of parasitoids offset the lower mortality as a result of B. thuringiensis in the delayed sprays. We conclude that B. thuringiensis applied when budworm larval populations are at peak fourth instar or later would complement rather than interfere with the beneficial effects of A. fumiferanae. The implications for budworm management strategies are discussed.

Résumé

Les interactions entre Bacillus thuringiensis Berliner et Apanteles fumiferanae Viereck en autant d’être facteurs de mortalité de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens), ont été étudiées en plaçant les larves parasitées et non-parasitées de la tordeuse sur le feuillage avec et sans les dépôts d’une préparation commerciale de B. thuringiensis. L’effet de l’âge de larves (et ainsi, la détermination de l’heure des arrosages) a été étudié, en utilisant les larves à la fin du troisième et du quatrième stades. Nous avons démontré que les larves parasitisées sont vraisemblablement plus aptes à survivre l’exposition à B. thuringiensis, parce qu’elles mangent moins que les larves non-parasitées et ainsi, elles sont moins portées d’ingérer une dose létale de la bactérie. Bacillus thuringiensis, néanmoins, a réduit les populations parasitoïdes de 50–60%, en tuant les hôtes avant la sortie des parasitoïdes. Cette répercussion négative de B. thuringiensis à la survie des parasitoïdes a été diminuée, quand l’exposition de la tordeuse a été retardée à partir de la fin du troisième jusqu’à la fin du quatrième stade. La survie améliorée de parasitoïdes a compensé la mortalité réduite des arrosages retardés de B. thuringiensis. Nous avons conclu que l’application de B. thuringiensis aux populations larvaires de la tordeuse à la cime du quatrième stade ou plus tard compléterait au lieu de contrarier les effets avantageux de A. fumiferanae. Les implications à l’égard des stratégies de maniement de la tordeuse sont discutées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Brown, N.R. 1946. Studies on the parasites of the spruce budworm, Archips fumiferanae (Clem.). 1. Life history of Apanteles fumiferanae Viereck (Hymenoptera, Braconidae). Can. Ent. 78: 121129.CrossRefGoogle Scholar
Grisdale, D. 1970. An improved method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 102: 11111117.CrossRefGoogle Scholar
Hamed, A.R. 1987. Zur wirking von Bacillus thuringiensis auf Parasiten von Yponomeuta euonymellus (Lep.: Yponomeutidae). Z. ang. Ent. 87: 294311.CrossRefGoogle Scholar
Hamel, D.R. 1977. The effects of Bacillus thuringiensis on parasitoids of the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), and the spruce coneworm, Dioryctria reniculelloides (Lepidoptera: Pyralidae), in Montana. Can. Ent. 109: 14091415.CrossRefGoogle Scholar
Kloft, W.J. 1984. Entomology. pp. 51103in L'Annunciata, M.F., and Legg, J.O. (Eds.), Isotopes and Radiation in Agricultural Sciences, Vol. 2. Academic Press, Toronto.Google Scholar
Krieg, A., and Langenbruch, G.A.. 1981. Susceptibility of arthropod species to Bacillus thuringiensis. pp. 837896in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London.Google Scholar
Lysyk, T.J., and Nealis, V.G.. 1988. Temperature requirements for development of the jack pine budworm (Lepidoptera: Tortricidae) and two of its parasitoids (Hymenoptera). J. econ. Ent. 81: 10451051.CrossRefGoogle Scholar
McLeod, J.M. 1977. Distribution of ovipositional attacks by parasitoids on overwintering larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 109: 789796.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.CrossRefGoogle Scholar
Morris, O.N., Cunningham, J.C., Finney-Crawley, J.R., Jacques, R.P., and Kinoshita, G.. 1986. Microbial insecticides in Canada: their registration and use in agriculture, forestry and public and animal health. Suppl. Bull. ent. Soc. Can. 18. 43 pp.Google Scholar
Nealis, V.G., and Fraser, S.. 1988. Rate of development, reproduction and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae) under controlled conditions. Can. Ent. 120: 197204.CrossRefGoogle Scholar
Nealis, V.G., and Lysyk, T.J.. 1989. Sampling overwintering jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), and two of its parasitoids (Hymenoptera). Can. Ent. 120: 11011111.CrossRefGoogle Scholar
Niwa, C.G., Stelzer, M.J., and Beckwith, R.C.. 1987. Effects of Bacillus thuringiensis on parasites of western spruce budworm (Lepidoptera: Tortricidae). J. econ. Ent. 80: 750753.CrossRefGoogle Scholar
Randall, A.P. 1957. Plastic rearing cage for maintaining fresh conifer foliage for insect rearing. Can. Ent. 99: 448449.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman and Co., New York. xviii + 859 pp.Google Scholar
Thompson, C.G., Neisses, J., and Batzer, H.O.. 1977. Field tests of Bacillus thuringiensis and aerial application strategies on western mountainous terrain. USDA For. Serv. Res. Pap. PNW-230. Portland, Oregon. 12 pp.Google Scholar
van Frankenhuyzen, K., and Fast, P.G.. 1989. Susceptibility of three coniferophagous Choristoneura species (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki. J. econ. Ent. 82: 193196.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C.N.. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). J. econ. Ent. 82: 868872.CrossRefGoogle Scholar
Waage, J.K., Hassell, M.P., and Godfray, H.C.J.. 1985. The dynamics of pest–parasitoid–insecticide interactions. J. appl. Ecol. 22: 825838.CrossRefGoogle Scholar
Weseloh, R.M., and Andreadis, T.G.. 1982. Possible mechanism for synergism between Bacillus thuringiensis and the gypsy moth (Lepidoptera: Lymantriidae) parasitoid, Apanteles melanoscelus (Hymenoptera: Braconidae). Ann. ent. Soc. Am. 75: 435438.CrossRefGoogle Scholar