Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:58:31.473Z Has data issue: false hasContentIssue false

Laboratory evaluation of insecticides for the control of Delia planipalpis (Diptera: Anthomyiidae), a nascent pest of broccoli (Brassicaceae) in Mexico

Published online by Cambridge University Press:  08 January 2025

Rodrigo Lasa*
Affiliation:
Instituto de Ecología AC, Xalapa, Veracruz, 91073, Mexico
Guadalupe Córdova-García
Affiliation:
Instituto de Investigaciones en Inteligencia Artificial (IIIA), Universidad Veracruzana, Xalapa, Veracruz, 91000, Mexico
Trevor Williams
Affiliation:
Instituto de Ecología AC, Xalapa, Veracruz, 91073, Mexico
*
Corresponding author: Rodrigo Lasa; Email: rodrilasa@gmail.com

Abstract

The radish fly, Delia planipalpis Linnaeus (Diptera: Anthomyiidae), is an emerging pest of broccoli and brassicaceous crops (Brassicaceae). The fly oviposits close to the stem of broccoli plants, and larvae feed within the stem and then pupate in the soil. Due to D. planipalpis’s recent appearance as a pest, no insecticides are registered for its management in Mexico. This study evaluated the efficacy of 13 synthetic and biological insecticides against different developmental stages through laboratory bioassays. Neonicotinoid-based products were highly toxic to the larvae, especially when applied via root irrigation, with thiamethoxam, clothianidin, and imidacloprid showing systemic activity. Thiamethoxam- and spinetoram-based products were also effective when applied to the stem oviposition site as a spray. A clothianidin-based product demonstrated moderate ovicidal activity, and bifenthrin had moderate residual activity against adult flies. A pyriproxyfen-based product effectively suppressed adult emergence. Products based on spirotetramat, neem (Meliaceae), and Tagetes (marigold) (Asteraceae) extracts and the microbial insecticide Bacillus thuringiensis var. israelensis (Bacillaceae) were ineffective against this pest. Spinosad and Sterneinema feltiae (Rhabditida: Steinernematidae) were not highly effective but could be used together with other control strategies in organic production. Neonicotinoids, spinetoram, and pyriproxyfen are promising options to validate in field trials for the management of D. planipalpis in broccoli.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Leah Flaherty

References

Bažok, R., Cerani-Serti, M., Bari, J.I., Kozina, A., Kos, T., Lemi, D., and Aija, M. 2012. Seasonal flight, optimal timing and efficacy of selected insecticides for cabbage maggot (Delia radicum L., Diptera: Anthomyiidae) control. Insects, 3: 10011027. https://doi.org/10.3390/insects3041001.CrossRefGoogle ScholarPubMed
Beck, B., Spanoghe, P., Moens, M., Brusselman, E., Temmerman, F., Pollet, S., and Nuyttens, D. 2014. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing. Pest Management Science, 70: 841851. https://doi.org/10.1002/ps.3628.CrossRefGoogle ScholarPubMed
Benelli, G., Canale, A., Toniolo, C., Higuchi, A., Murugan, K., Pavela, R., and Nicoletti, M. 2017. Neem (Azadirachta indica): towards the ideal insecticide? Natural Product Research, 31: 369386. https://doi.org/10.1080/14786419.2016.1214834.CrossRefGoogle ScholarPubMed
Bull, D.L. and Meola, R.W. 1993. Effect and fate of the insect growth regulator pyriproxyfen after application to the horn fly (Diptera: Muscidae). Journal of Economic Entomology, 86: 17541760. https://doi.org/10.1093/jee/86.6.1754.CrossRefGoogle Scholar
Casaña-Giner, V., Gandía-Balaguer, A., Mengod-Puerta, C., Primo-Millo, J., and Primo-Yúfera, E. 1999. Insect growth regulators as chemosterilants for Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 92: 303308. https://doi.org/10.1093/jee/92.2.303.CrossRefGoogle Scholar
Comité Estatal de Sanidad Vegetal del Estado de Guanajuato (CESAVEG). 2014. Manejo fitosanitario de hortalizas. Programa de trabajo 1–16 [Phytosanitary management of vegetables. Work program 1–16]. Available from https://www.gob.mx/cms/uploads/attachment/file/156498/Manejo_fitosanitario_de_hortalizas.pdf [accessed 13 September 2024].Google Scholar
Chen, S., Li, J., Han, X., and Moens, M. 2003. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. BioControl, 48: 713724. https://doi.org/10.1023/A:1026341325264.CrossRefGoogle Scholar
Córdova-García, G., Navarro-de-la-Fuente, L., Pérez-Staples, D., Williams, T., and Lasa, R. 2023. Biology and ecology of Delia planipalpis (Stein; Diptera: Anthomyiidae), an emerging pest of broccoli in Mexico. Insects, 14: 659. https://doi.org/10.3390/insects14070659.CrossRefGoogle ScholarPubMed
Dalton, D.T., Walton, V.M., Shearer, P.W., Walsh, D.B., Caprile, J., and Isaacs, R. 2011. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Management Science, 67: 13681374. https://doi.org/10.1002/ps.2280.CrossRefGoogle ScholarPubMed
Duan, J.J., Prokopy, R.J., Yin, C.M., Bergweiler, C., and Oouchi, H. 1995. Effects of pyriproxyfen on ovarian development and fecundity of Rhagoletis pomonella flies. Entomologia Experimentalis et Applicata, 77: 1721. https://doi.org/10.1111/j.1570-7458.1995.tb01980.x.CrossRefGoogle Scholar
Ellis, S.A. and Scatcherd, J.E. 2007. Bean seed fly (Delia platura, Delia florilega) and onion fly (Delia antiqua) incidence in England and an evaluation of chemical and biological control options. Annals of Applied Biology, 151: 259267. https://doi.org/10.1111/j.1744-7348.2007.00170.x CrossRefGoogle Scholar
Ester, A., de Puttera, H., and van Bilsen, J.G.P.M. 2003. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Protection, 22: 761e768. https://doi.org/10.1016/S0261-2194(03)00042-5.CrossRefGoogle Scholar
Fischer, R. and Weiss, H. 2008. Spirotetramat (Movento®): discovery, synthesis and physico-chemical properties. Bayer Crop Science Journal, 61: 127140.Google Scholar
Hoffmann, E.J., Middleton, S.M., and Wise, J.C. 2008. Ovicidal activity of organophosphate, oxadiazine, neonicotinoid, and insect growth regulator chemistries on Northern strain plum curculio, Conotrachelus nenuphar . Journal of Insect Science, 9: 29. https://doi.org/10.1673/031.008.2901.Google Scholar
Isman, M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51: 4566. https://doi.org/10.1146/annurev.ento.51.110104.151146.CrossRefGoogle Scholar
Joseph, S.V. and Zarate, J. 2015. Comparing efficacy of insecticides against cabbage maggot (Diptera: Anthomyiidae) in the laboratory. Crop Protection, 77: 148156. https://doi.org/10.1016/j.cropro.2015.07.022.CrossRefGoogle Scholar
Kirkpatrick, A.L., Hargerty, A.M., Turnipseed, S.G., Sullivan, M.J., and Bridges, W.C. 2005. Activity of selected neonicotinoids and dicrotophos on nontarget arthropods in cotton: implications in insect management. Journal of Economic Entomology, 98: 814820. https://doi.org/10.1603/0022-0493-98.3.814.CrossRefGoogle Scholar
Langley, P.A., Felton, T., Stafford, K., and Oouchp, H. 1990. Formulation of pyriproxyfen, a juvenile hormone mimic, for tsetse control. Medical and Veterinary Entomology, 4: 127133. https://doi.org/10.1111/j.1365-2915.1990.tb00269.x.CrossRefGoogle ScholarPubMed
Lasa, R., Córdova-García, G., Navarro-de-la-Fuente, L., and Williams, T. 2024. Sticky traps and water pan traps to monitor Delia planipalpis (Diptera: Anthomyiidae), an emerging pest of broccoli in Mexico. Crop Protection, 176: 106495. https://doi.org/10.1016/j.cropro.2023.106495.CrossRefGoogle Scholar
Meraz-Álvarez, R., Bautista-Martínez, N., Illescas-Riquelme, C.P., González-Hernández, H., Valdez-Carrasco, J.M., and Savage, J. 2020. Identification of Delia spp. (Robineau-Desvoidy; Diptera, Anthomyiidae) and its cruciferous hosts in Mexico. ZooKeys, 964: 127141. https://doi.org/10.3897/zookeys.964.53947.CrossRefGoogle ScholarPubMed
Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V.L., and Kaussmann, M. 2003. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pesticide Biochemistry and Physiology, 76: 5556. https://doi.org/10.1016/S0048-3575(03)00065-8.CrossRefGoogle Scholar
Nielsen, O. 2003. Susceptibility of Delia radicum to steinernematid nematodes. BioControl, 48: 431446. https://doi.org/10.1023/A:1024759229315.CrossRefGoogle Scholar
ProducePay. 2022. Producción y exportación de brócoli en México [Broccoli production and export in Mexico]. Available from https://es.producepay.com/produccion-y-exportacion-de-brocoli-en-mexico/ [accessed 5 June 2024].Google Scholar
Perich, M.J., Wells, C., Bertsch, W., and Tredway, K.E. 1995. Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. Journal of the American Mosquito Control Association, 11: 307310.Google ScholarPubMed
Pinos, D., Andrés-Garrido, A., Ferré, J., and Hernández-Martínez, P. 2021. Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins. Microbiology and Molecular Biology Reviews, 85: e00007–20. https://doi.org/10.1128/MMBR.00007-20.CrossRefGoogle ScholarPubMed
Ravikumar, P. 2010. Chemical examination and insecticidal properties of Tagetes erecta and Tagetes patula. Asian Journal of Bio Science, 5: 2931.Google Scholar
Sánchez-Ramos, I., Fernández, C.E., and González-Núñez, M. 2024. Laboratory evaluation of insect growth regulators against the spotted-wing drosophila, Drosophila suzukii . Journal of Pest Science, 97: 885895. https://doi.org/10.1007/s10340-023-01648-y.CrossRefGoogle Scholar
Shimokawatoko, Y., Sato, N., Yamaguchi, Y., and Tanaka, H. 2012. Development of the Novel Insecticide Spinetoram (Diana®). Sumitomo Chemical Co., Ltd., Tokyo, Japan.Google Scholar
Smith, E.H. and Salkeld, E.H. 1966. The use and action of ovicides. Annual Review of Entomology, 11: 331368. https://doi.org/10.1146/annurev.en.11.010166.001555.CrossRefGoogle ScholarPubMed
The Jamovi Project. 2024. Jamovi. Version 2.5 [computer software]. Available from https://www.jamovi.org [accessed 22 June 2024].Google Scholar
Thompson, G.D., Dutton, R., and Sparks, T.C. 2000. Spinosad – a case study: an example from a natural products discovery programme. Pest Management Science, 56: 696702. https://doi.org/10.1002/1526-4998(200008)56:8<696::AID-PS182>3.0.CO;2-5.3.0.CO;2-5>CrossRefGoogle Scholar
Van Leeuwen, T., Van de Veire, M., Dermauw, W., and Tirry, L. 2006. Systemic toxicity of spinosad to the greenhouse whitefly Trialeurodes vaporariorum and to the cotton leaf worm Spodoptera littoralis. Phytoparasitica, 34: 102108. https://doi.org/10.1007/BF02981345.CrossRefGoogle Scholar
Weichel, L. and Nauen, R. 2004. Uptake, translocation and bioavailability of imidacloprid in several hop varieties. Pest Management Science, 60: 440446.CrossRefGoogle ScholarPubMed
World Health Organisation. 2022. Standard operating procedure for impregnation of filter papers for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. SOP version. 17 pp. https://www.who.int/publications/i/item/9789240043817 [Accessed 11 September 2024].Google Scholar
Zhang, C., Wang, X., Kaur, P., and Gan, J. 2023. A critical review on the accumulation of neonicotinoid insecticides in pollen and nectar: influencing factors and implications for pollinator exposure. Science of The Total Environment, 899: 165670. https://doi.org/10.1016/j.scitotenv.2023.165670.CrossRefGoogle ScholarPubMed
Zhou, F., Zhu, G., Zhao, H., Wang, Z., Xue, M., Li, X., et al. 2016. Sterilization effects of adult-targeted baits containing insect growth regulators on Delia antiqua. Scientific Reports, 6: 32855. https://doi.org/10.1038/srep32855.CrossRefGoogle ScholarPubMed