Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:44:59.321Z Has data issue: false hasContentIssue false

Laboratory Studies on the Behaviour of the Douglas-fir Beetle, Dendroctonus pseudotsugae Hopkins1

Published online by Cambridge University Press:  31 May 2012

M. D. Atkins
Affiliation:
Department of Forestry of Canada, Forest Research Laboratory, Victoria, British Columbia

Abstract

The behaviour of Dendroctonus pseudotsugae Hopk. in different physiological states was studied in relation to temperature, light, and host.

Newly emerged beetles preferred temperatures near the threshold for flight. When conditioned in dry air at room temperature for 16 hours they preferred cooler temperatures.

At room temperature, most newly emerged beetles settled in the brightest zone of a light gradient (55 foot-candles), although some settled in dimmer zones. If the beetles' emergence was delayed or if they were stored after emergence, more remained in the zone between 0.5 and 10 foot-candles.

In light-dark tests at room temperature most newly emerged beetles were photopositive, but some were indifferent and a few were photonegative. Increasing the temperature and humidity increased the proportion of photonegative individuals. Newly emerged females oriented more directly to a single source of light than males, bur after conditioning or aging both reacted similarly.

Females were separated into three behavioural types based on their reactions. Photopositive individuals flew more readily than indifferent or photonegative beetles; some photonegative females showed no inclination to fly.

Photopositive females were usually host negative but photonegative females were host positive. The proportion of these behavioural types within different samples varied. A group that emerged early contained a higher incidence of photopositive host-negative individuals than a group that emerged late, or was stored for 10 days after emergence. But host-negative beetles would attack logs after starvation, flight exercise, or exposure to more attractive hosts.

Host-positive females contained less fat than host-negative siblings. The decline in lipids during aging, starvation or flight thus may induce behavioural changes.

There is a co-ordination of successive activities in the Douglas-fir beetle similar to that reported for aphids. The initial urge to disperse outweighs responses to host stimuli, but this balance changes as the beetles fly or as host stimuli increase. The balance between thresholds for dispersal and attack also varies in relation to the conditions under which the emerging beetles developed. Consequently, each individual behaves differently when it emerges. The behaviour of a population changes as the season progresses and from year to year owing to changes in the state of individuals and in the attractiveness of hosts.

Sommaire

Le dendroctone du sapin Douglas (Dendroctonus pseudotsugae Hopk.) au stade adulte a été suivi en laboratoire quant à son état physiologique et ses réactions devant l'hôte sous diverses conditions de température et de lumière.

Les individus frais éclos furent placés en deux endroits à température différente et leur préférence alla à celui où approchait la température minima d’envol. Plus tard, après conditionnement de l'air (air sec quand la température est normale d’intérieur (15.5 °C.) durant 16 heures, ils choisirent la plus basse des deux températures offertes.

Nous avons observé un rapport direct entre l'intensité lumineuse et l'activité des insectes à 15.5 °C.; par ailleurs, si nous assombrissions la cage, elle diminuait évidemment. La plupart des individus frais sortis de l'hôte se rapprochèrent de la zone la plus brillante d’une source lumineuse variant de 0.5 à 55 unités d’éclairement; quelques-uns se fixèrent dans chacune des autres zones d’intensité lumineuse. Si leur apparition au stade adulte avait été retardée ou si, dès cette apparition, ils avaient été soumis à un entreposage, ils préféraient demeurer dans une zone de faible luminosité (0.5 à 10 unités d’éclairement).

Lors d’épreuves faites à 15.5 °C., la plupart des adultes avaient un phototropisme positif mais quelques-uns étaient repoussés ou n’étaient pas influencés par la lumière. Le nombre d’individus à phototropisme négatif pouvait être augmenté si nous élevions la température et le pourcentage d’humidité.

Lorsqu’un faisceau lumineux fut braqué sur des adultes frais éclos, les femelles s’orientèrent plus directement que les mâles, mais plus tard ou à la suite du conditionnement de l'air, cette différence s’estompa.

Selon leur phototropisme ou leur manière de s’orienter devant un faisceau lumineux, nous pouvons former trois catégories de femelles. D’ailleurs, les insectes à phototropisme positif s’envolaient plus rapidement que les autres, et quelques femelles repoussées par la lumière n’avaient même pas envie de voler.

Les femelles de type à phototropisme positif avaient un tropisme négatif envers l'hôte; le phénomène contraire se voyait aussi. La proportion des individus dudit type variait selon la date: elle était plus grande au début de la saison du stade adulte. Elle était par contre plus faible dans le cas de sujets qui avaient été entreposés les premiers dix jours après leur éclosion. Les insectes qui étaient repoussés par l'hôte pouvaient être induits à renverser leur tropisme si on les affamaient ou les exerçaient à voler; ou seulement si on leur offrait des morceaux plus attrayants de sapins Douglas.

Les femelles fraîches écloses et à tropisme positif vers l'hôte étaient nettement moins grasses que leurs semblables du type contraire. Donc, certains facteurs causals tels le degré de consommation de lipides durant le stade adulte, la famine, ou l'énergie dépensée à voler, entrent peut-être en jeu.

Le dendroctone du sapin Douglas semble coordonner successivement ses activités suivant la même méthode que chez les aphidiens. Au début, l'hôte natal est moins attrayant que le besoin de dispersion. Plus tard, ce dernier besoin diminue à mesure que les premiers individus se sont éloignés du lieu de leur naissance; ou l'hôte prend de plus en plus d’attrait si les adultes qui l'attaquent augmentent en nombre.

Le jeu entre les conditions favorisant l'instinct de dispersion, d’une part, et celui d’attaque immédiate sur l'hôte natal, d’autre part, varie selon les individus et les conditions d’habitat dans lesquelles eut lieu leur génération. Conséquemment, à l'éclosion, différents individus n’agissent pas de la même manière. Mais lorsque la saison avance, les adultes frais éclos auront tendance à s’attaquer immédiatement à l'hôte natal; et dès que cette action sera commencée, son attrait sur l'insecte augmentera sans retour. De plus, le régime de dispersion et le choix de l'hôte varieront tous les ans selon le temps qu’il fera avant et pendant la période d’éclosion.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. F. 1948. Host selection by the pine engraver. J. econ. Ent. 41: 596602.CrossRefGoogle Scholar
Atkins, M. D. 1959. A study of the flight of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). I. Flight preparation and response. Can. Ent. 91: 283391.CrossRefGoogle Scholar
Atkins, M. D. 1960. A study of the flight of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). II. Flight movements. Can. Ent. 92: 941954.CrossRefGoogle Scholar
Atkins, M. D. 1961. A study of the flight of the Douglas-fir beetle, Dendroctonus pseudot-sugae Hopk. (Coleoptera: Scolytidae). III. Flight capacity. Can. Ent. 93: 467474.CrossRefGoogle Scholar
Atkins, M. D., and Farris, S. H.. 1962. A contribution to the knowledge of flight muscle changes in the Scolytidae (Coleoptera). Can. Ent. 94: 2532.CrossRefGoogle Scholar
Atkins, M. D., and Wellington, W. G.. 1962. A versatile alternative chamber for insect behaviour studies. Can. Ent. 94: 428433.CrossRefGoogle Scholar
Bedard, W. D. 1963. Variables affecting the capacity of bark beetles to damage trees. Report. U.S.D.A., For. Service, Berkeley, Calif.22 pp.Google Scholar
Callaham, R. Z. 1955. Oleoresin production in the resistance of ponderosa pine to bark beetles. Report. U.S.D.A., For. Service, Berkeley, Calif. 84 pp.Google Scholar
Cerezke, H. F. 1964. The morphology and functions of the reproductive systems of Dendroctonus monticolae Hopk. (Coleoptera: Scolytidae). Can. Ent. 96: 477500.CrossRefGoogle Scholar
Chapman, J. A. 1954. Flight of Dendroctonus pseudotsugae in the laboratory. Bi-Mon. Prog. Rep., Can. Dep. Agric., Division of Forest Biology 10(4): 4.Google Scholar
Chapman, J. A. 1955. Sex determination by stridulation sound in the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. Bi-Mon. Prog. Rep., Can. Dep. Agric., Division of Forest Biology 11(3): 2.Google Scholar
Chapman, J. A. 1958. Studies on the physiology of the ambrosia beetle Trypodendron in relation to its ecology. Proc. 10th Int. Congr. Ent., Montreal 4: 375380.Google Scholar
Chapman, J. A. 1963. Field selection of different log odors by scolytid beetles. Can. Ent. 95: 673676.CrossRefGoogle Scholar
Edwards, D. K. 1960. A method for continuous determination of displacement activity in a group of flying insects. Can. J. Zool. 38: 10211025.CrossRefGoogle Scholar
Gara, R I. 1963. Studies on the flight behaviour of Ips confusus (Lec.) (Coleoptera: Scolytidae) in response to attractive material. Contr. Boyce Thompson Inst. 22: 5166.Google Scholar
Gara, R. I., and Vité, J. P.. 1962. Studies on the flight patterns of bark beetles (Coleoptera: Scolytidae) in second growth ponderosa pine forests. Contr. Boyce Thomnpson Inst. 21: 275290.Google Scholar
Graham, K. 1959. Release by flight exercise of a chemotropic response from photopositive domination in a scolytid beetle. Nature 184: 282284.CrossRefGoogle Scholar
Graham, K. 1961. Air swallowing: A mechanism in photic reversal of the beetle Trypodendron. Nature 191: 519520.CrossRefGoogle Scholar
Henson, W. R. 1962. Laboratory studies on the adult behaviour of Conophthorus coniperdus (Schwarz) (Coleoptera: Scolytidae). III. Flight. Ann. ent. Soc. Amer. 55: 524530.CrossRefGoogle Scholar
Hierholzer, O. 1950. Ein Beitrag zur Frage der Orientierung von Ips curvidens Germ. Z. Tierpsych. 7: 588620.CrossRefGoogle Scholar
Johnson, B. 1958. Factors affecting the locomotor and settling responses of alate aphids. Anim. Behav. 6: 926.CrossRefGoogle Scholar
Johnson, B. 1963. A histological study of neurosecretion in aphids. J. ins. Physiol. 9: 727739.CrossRefGoogle Scholar
Johnson, C. G. 1960. A basis for a general system of insect migration and dispersal by flight. Nature 186: 348350.CrossRefGoogle Scholar
Kennedy, J. S., and Booth, C. O., 1963 a. Free flight of aphids in the laboratory. J. exp. Biol. 40: 6785.CrossRefGoogle Scholar
Kennedy, J. S., and Booth, C. O.. 1963 b. Co-ordination of successive activities in an aphid. The effect of flight on the settling responses. J. exp. Biol. 40: 351369.CrossRefGoogle Scholar
Maelzer, D. A. 1961. The behaviour of the adult of Aphodius tasmaniae Hope (Col., Scarabaeidae) in South Australia. Bull. ent. Res. 51: 643670.CrossRefGoogle Scholar
McLintock, J. 1960. Water and fat in insects. (Editorial) Ent. News 38(7).Google Scholar
McMullen, L. H., and Atkins, M. D.. 1962. On the flight and host selection of the Douglasfir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). Can. Ent. 94: 13091325.CrossRefGoogle Scholar
Miller, J. M., and Keen, F. P.. 1960. Biology and control of the western pine beetle. Misc. Publ. U.S. Dep. Agric. 800, 381 pp.Google Scholar
Perttunen, V. 1958. The reversal of positive phototaxis by low temperatures in Blastophagus piniperda L. (Col., Scolytidae). Ann. ent. fenn. 24(1): 1218.Google Scholar
Perttunen, V. 1959. Effect of temperature on the light reactions of Blastophagus piniperda L. (Col., Scolytidae). Ann. ent. fenn. 25(2): 6671.Google Scholar
Perttunen, V. 1960. Seasonal variation in the light reactions of Blastophagus piniperda L. (Col., Scolytidae) at different temperatures. Ann. ent. fenn. 26(1): 8692.Google Scholar
Pitman, G. B., and Vité, J. P.. 1963. Studies on the pheromone of Ips confusus (Lec.). I. Secondary sexual dimorphism in the hindgut epithelium. Contr. Boyce Thompson Inst. 22: 221226.Google Scholar
Reid, R. W. 1958. Internal changes in the female mountain pine beetle, Dendroctonus monticolae Hopk., associated with egg laying and flight. Can. Ent. 90: 464468.CrossRefGoogle Scholar
Rudinsky, J. A. 1963. Response of Dendroctonus pseudotsugae Hopk. to volatile attractants. Contr. Boyce Thompson Inst. 22: 2238.Google Scholar
Rudinsky, J. A., and Vité, J. P.. 1956. Effects of temperature upon the activity and behaviour of the Douglas-fir beetle. For. Sci. 2: 258267.Google Scholar
Ryan, R. B. 1959. Termination of diapause in the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae), as an aid to continuous rearing. Can. Ent. 91: 520525.CrossRefGoogle Scholar
Southwood, T. R. E. 1962. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37: 171214.CrossRefGoogle Scholar
Thorsteinson, A. J. 1960. Host selection in phytophagous insects. A. Rev. Ent. 5: 193218.CrossRefGoogle Scholar
Vité, J. P. 1952. Temperaturversuche an Ips typographus L. Zool. Anz. 149: 195206.Google Scholar
Vité, J. P. 1961. The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack in Pinus ponderosa. Contr. Boyce Thompson Inst. 21: 3766.Google Scholar
Vité, J. P., and Gara, R. I.. 1961. A field method for observation on olfactory responses of bark beetles (Scolytidae) to volatile attractants. Contr. Boyce Thompson Inst. 21: 175182.Google Scholar
Vité, J. P., and Gara, R. I.. 1962. Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contr. Boyce Thompson Inst. 21: 251274.Google Scholar
Vité, J. P., and Wood, D. L.. 1961. A study on the applicability of the measurement of oleoresin exudation pressure in determining susceptibility of second growth ponderosa pine to bark beetle infestation. Contr. Boyce Thompson Inst. 21: 6778.Google Scholar
Wellington, W. G. 1957. Individual differences as a factor in population dynamics: the development of a problem. Can. J. Zool. 35: 293323.CrossRefGoogle Scholar
Wellington, W. G. 1960 a. The need for direct observations of behaviour in studies of temperature effects on light reactions. Can. Ent. 92: 438448.CrossRefGoogle Scholar
Wellington, W. G. 1960 b. Qualitative changes in natural populations during changes in abundance. Can. J. Zool. 38: 289314.CrossRefGoogle Scholar
Wellington, W. G. 1962. Population quality and the maintenance of nuclear polyhedrosis between outbreaks of Malacosoma pluviale (Dyar). J. Insect Pathol. 4: 285305.Google Scholar
Wellington, W. G. 1964. Qualitative changes in populations in unstable environments. Can. Ent. 96: 436451.CrossRefGoogle Scholar
Wellington, W. G., Sullivan, C. R. and Henson, W. R.. 1954. The light reactions of larvae of the spotless fall webworm, Hyphantria textar Harr. (Lepidoptera: Arctiidae). Can. Ent. 86: 529542.CrossRefGoogle Scholar
Wood, D. L. 1962 a. The attraction created by males of a bark beetle Ips confusus (Leconte) attacking ponderosa pine. Pan-Pacif. Ent. 38: 141145.Google Scholar
Wood, D. L. 1962 b. Experiments on the interrelationship between oleoresin exudation pressure in Pinus ponderosa and attack by Ips confusus (Lec.) (Coleoptera: Scolytidae). Can. Ent. 94: 473477.CrossRefGoogle Scholar
Wood, D. L., and Bushing, R. W.. 1963. The olfactory response of Ips confusus (Leconte) (Coleoptera: Scolytidae) to the secondary attraction in the laboratory. Can. Ent. 95: 10661078.CrossRefGoogle Scholar
Wood, D. L., and Stark, R. W.. 1964. Oleoresin exudation pressure and attack by Dendroctonus brevicomis Lec. (Coleoptera: Scolytidae) in second growth ponderosa pine. Paper presented to the Annual Meeting of the Entomological Society of Canada, Vancouver, B.C., October, 1964.Google Scholar
Wood, D. L., and Vité, J. P.. 1961. Studies on the host selection behaviour of Ips confusus (Leconte) (Coleoptera: Scolytidae) attacking ponderosa pine. Contr. Boyce Thompson Inst. 21: 7996.Google Scholar