Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:18:16.781Z Has data issue: false hasContentIssue false

LARVAL HABITAT CHARACTERISTICS OF COQUILLETTIDIA PERTURBANS (DIPTERA: CULICIDAE) IN MINNESOTA

Published online by Cambridge University Press:  31 May 2012

Darold P. Batzer
Affiliation:
Metropolitan Mosquito Control District, 2380 Wycliff St., St. Paul, Minnesota, USA 55114
Robert D. Sjogren
Affiliation:
Metropolitan Mosquito Control District, 2380 Wycliff St., St. Paul, Minnesota, USA 55114

Abstract

Larvae of Coquillettidia pertubans (Walker) are found in some marshes of permanent water with stands of aquatic vegetation. Eighty-six marshes, located within a 400-km2 area of Hennepin County, Minnesota, were examined in the fall of 1984 to determine factors that characterize C. perturbans breeding sites. We found that C. perturbans larvae attached to the roots of primarily Typha species although other plant species were also used. The water in sites with larvae was significantly deeper, lower in dissolved oxygen, and contained a significantly thicker layer of organic debris than sites without larvae. Larvae were associated with sites where Typha had specialized structures called water roots, which grow in the water column. Larvae inhabiting floating mats of vegetation were associated with interior openings within the mats.

Résumé

On trouve les larves de Coquillettidia perturbans (Walker) dans des marais permanents avec un couvert de végétation aquatique. A l’automne 1984, on a examiné 86 marais situés dans un secteur de 400 km2 du comté de Hennepin au Minnesota, afin de déterminer les caractéristiques des sites de multiplication de C. perturbans. On a trouvé que les larves de C. perturbans se fixent surtout sur les racines d’espèces de Typha, bien que d’autres espèces de plantes soient aussi utilisées. Dans les sites à larves, l’eau était significativement plus profonde, plus faible en oxygène dissout et avec une couche de débris organiques plus épaisse que dans les sites sans larves. Les larves étaient présentes dans les sites où les Typha avaient des structures spéciales désignées racines d’eau qui se développent dans la colonne d’eau. Les larves habitant les tapis de végétation flottante étaient associées aux ouvertures intérieures des tapis.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R.L. 1980. Coquillettidia perturbans in Massachusetts. Proc. N.J. Mosq. Control Assoc. 67: 4147.Google Scholar
Bidlingmayer, W.L. 1954. Description of a trap for Mansonia perturbans. Mosq. News 14: 5558.Google Scholar
Bidlingmayer, W.L. 1968. Larval development of Mansonia mosquitoes in central Florida. Mosq. News 28: 5157.Google Scholar
Brower, L.P. 1953. The distribution of “Mansonia perturbans” (Walker) in Morris County. Proc. N.J. Mosq. Exterm. Assoc. 40: 147149.Google Scholar
Dean, E.B. 1933. Effect of soil type and aeration upon root systems of certain aquatic plants. Plant Physiol. 8: 203222.CrossRefGoogle ScholarPubMed
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 141.CrossRefGoogle Scholar
Gozhenko, V.A. 1978. Biotopes and developmental periods of Mansonia richiardii (Ficalbi) 1889 under conditions in the steppes of the Ukrainian SSR. Med. Parazitol. Parazit. Bolezni 47(1): 3640. (In Russian).Google Scholar
Guille, G. 1976. Recherches éco-éthologiques sur Coquillettidia (Coquillettidia) richiardii (Ficalbi), 1889 (Dipter: Culicidae) du littoral méditerranéen Français II.—Milieu et comportement. Ann. Sci. Nat. Zool. Biol. Anim. 18(1): 5112.Google Scholar
Hagmann, L.E. 1980. Observations on Coquillettidia perturbans in New Jersey. Proc. N. J. Mosq. Control Assoc. 67: 4852.Google Scholar
Lounibos, L.P., and Escher, R.L.. 1983. Seasonality and sampling of Coquillettidia perturbans (Diptera: Culicidae) in south Florida. Environ. Ent. 12: 10871093.CrossRefGoogle Scholar
McNeel, T.E. 1931. A method for locating the larvae of the mosquito Mansonia. Science 74: 1115.Google Scholar
McNeel, T.E. 1932. Observations on the biology of Mansonia perturbans (Walker) Diptera, Culicidae. Proc. N.J. Mosq. Exterm. Assoc., 19th Annu. Meet. pp. 125128.Google Scholar
Sjogren, R.D. 1968. Experimental use of Lemna to prevent mosquito breeding in organically polluted waters. Proc. and Papers of the 36th Annu. Conf. of the Calif. Mosq. Control Assoc. pp. 3133.Google Scholar
Smith, J.B. 1908. Notes on the larval habits of Culex perturbans. Ent. News 19: 2225.Google Scholar
Smith, S.G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). Am. Midl. Nat. 78(2): 257287.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1969. Biometry. W.H. Freeman and Company, San Franscisco. 776 pp.Google Scholar
Weaver, J.E., and Himmel, W.J.. 1930. Relation of increased water content and decreased aeration to root development in hydrophytes. Plant Physiol. 5: 6992.Google Scholar