Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T00:14:28.531Z Has data issue: false hasContentIssue false

LEAF WAXINESS AND THE PERFORMANCE OF LIPAPHIS ERYSIMI (KALTENBACH) (HOMOPTERA: APHIDIDAE) ON THREE BRASSICA CROPS1

Published online by Cambridge University Press:  31 May 2012

R.J. Lamb
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
M.A.H. Smith
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.P. Bodnaryk
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

The amount of wax on leaf surfaces was determined for waxy and low-wax phenotypes of three Brassica crops: oilseed rape, kale, and collards. The effects of these phenotypes were assessed on the fecundity, settling time, and biomass increase of the mustard aphid, Lipaphis erysimi (Kaltenbach), a pest of oilseed rape. Leaves of the waxy phenotype of each Brassica had about twice as much wax as the low-wax phenotype, but the amount of wax had no effect on any of the three measures of aphid performance. Lipaphis erysimi was more fecund and produced a higher biomass on the rape than on the collards, but settled more quickly on the collards than on rape. If the waxiness of oilseed rape is altered to increase crop resistance to other pests, the pest status of L. erysimi is unlikely to be affected.

Résumé

La quantité de cire sur la surface des feuilles a été évaluée chez des phenotypes cireux et peu cireux de trois espèces de Brassica : colza, chou frisé et chou à rosettes. Les effets de ces phenotypes sur la fécondité, l’établissement et l’augmentation de biomasse du puceron Lipaphis erysimi (Kaltenbach), un parasite du colza, ont été mesurés. Les feuilles du phénotype cireux de chacun des Brassica avaient environ deux fois plus de cire que les phénotypes peu cireux, mais la quantité de cire restait sans effet sur les trois mesures de la performance du puceron. Lipaphis erysimi s’est avéré plus fécond et produisait une quantité de biomasse plus importante sur le colza que sur le chou à rosettes, mais s’est établi plus rapidement sur le chou à rosettes que sur le colza. Si la quantité de cire sur le colza est modifiée pour augmenter la résistance aux autres organismes nuisibles, il est probable que la performance de L. erysimi n’en sera pas affectée.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åhman, I. 1990. Plant-surface characteristics and movements of two Brassica-feeding aphids, Lipaphis erysimi and Brevicoryne brassicae. Symposium Biologica Hungarica 39: 119125.Google Scholar
Bodnaryk, R.P. 1992 a. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science 72: 575581.CrossRefGoogle Scholar
Bodnaryk, R.P. 1992 b. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 72: 12951303.CrossRefGoogle Scholar
Eigenbrode, S.D., and Shelton, A.M.. 1992. Survival and behaviour of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S-ethyl dipropylthiocarbamate. Entomologia Experimentalis et Applicata 62: 139145.CrossRefGoogle Scholar
Eigenbrode, S.D., Stoner, K.A., Shelton, A.M., and Kain, W.C.. 1991. Characteristics of glossy leaf waxes associated with resistance to diamondback moth (Lepidoptera: Plutellidae) in Brassica oleracea. Journal of Economic Entomology 84: 16091618.CrossRefGoogle Scholar
Espelie, K.E., Bernays, E.A., and Brown, J.J.. 1991. Plant and insect cuticular lipids serve as behavioral cues for insects. Archives of Insect Biochemistry and Physiology 17: 223233.CrossRefGoogle Scholar
Klingauf, F., Nöcker-Wenzel, K., and Röttger, U.. 1978. The role of cuticle waxes in insect infestation behaviour. Journal of Plant Diseases and Protection 85: 228237.Google Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 34: 211229.CrossRefGoogle Scholar
Malik, R.S. 1981. Morphological, anatomical and biochemical basis of aphid, Lipaphis erysimi Kalt., resistance in Cruciferous species. Journal of the Swedish Seed Association 91: 2535.Google Scholar
SAS Institute Inc. 1990. SAS/STAT User's Guide, Version 6 Edition. SAS Institute Inc., Cary, NC. 1686 pp.Google Scholar
Singh, O.P., Dhamdhere, S.V., and Nema, K.K.. 1983. Effect of different parts of mustard plants on the development of mustard aphid, Lipaphis erysimi (Kalt.). Agricultural Science Digest 3: 57.Google Scholar
Stoner, K.A. 1990. Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environmental Entomology 19: 730739.CrossRefGoogle Scholar
Stork, N.E. 1980. Role of waxblooms in preventing attachment to Brassicas by the mustard beetle, Phaedon cochleariae. Entomologia Experimentalis et Applicata 28: 100107.CrossRefGoogle Scholar
Thompson, K.F. 1963. Resistance to the cabbage aphid (Brevicoryne brassicae) in Brassica plants. Nature 198: 209.CrossRefGoogle Scholar
Way, M.J., and Murdie, G.. 1965. An example of varietal variations in resistance of Brussels sprouts. Annals of Applied Biology 56: 326328.CrossRefGoogle Scholar