Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:48:52.453Z Has data issue: false hasContentIssue false

METHODS OF MEASURING BLOOD MEAL SIZE AND PROTEINASE ACTIVITY FOR DETERMINING EFFECTS OF MATED STATE ON DIGESTIVE PROCESSES OF FEMALE AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE)

Published online by Cambridge University Press:  31 May 2012

Jon G. Houseman
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
A.E.R. Downe
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract

Two techniques for measuring size of ingested blood meal and 5 methods of measuring proteinase activity in the midgut of Aedes aegypti are compared. Protein, measured after trichloroacetic acid precipitation, was found to be most suitable for determining blood meal size and loss of protein from the gut. Of 5 proteinase substrates tested (BAPNA (benzoyl-DL-arginine-p-nitroanilide), hemoglobin, casein, azocasein, and hide powder azure), BAPNA was considered most suitable for trypsin measurements. These techniques were used to show that virgin females, 6 and 10 days after eclosion, consumed smaller meals than mated females. Virgin females also showed delays in both onset of protein loss from the gut and the increase in proteinase activity after blood feeding.

Résumé

On a comparé 2 techniques pour déterminer la quantité de sang ingérée et 5 méthodes pour mesurer l’activité d’une protéinase dans l’intestin moyen de Aedes aegypti. Après précipitation avec l’acide trichloroacétique, les protéines furent jugées appropriées pour évaluer la quantité de sang ingérée de même que pour mesurer la perte de protéines à partir de l’intestin. Des 5 substrats de protéinase testés (le BAPNA (benzoyl-DL-arginine-p-nitroaniline), l’hémoglobine, la caséine, l’azocaséine et le “hide powder azure”), le BAPNA fut considéré comme le plus approprié pour mesurer la trypsine. Ces techniques furent utilisées pour démontrer que les femelles vierges, 6 et 10 jours après leur émergence consomment moins que les femelles accouplées. Les femelles vierges commencent plus tard à perdre des protéines de l’intestin de même qu’à montrer une augmentation de l’activité de la protéinase après un repas.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlakha, V., and Pillai, M.K.K.. 1976. Role of male accessory gland substance in the regulation of blood intake by mosquitoes. J. Insect Physiol. 22: 14411442.CrossRefGoogle ScholarPubMed
Bramhall, S., Noack, N., and Loewenberg, J.R.. 1969. A simple colorometric method for determining protein. Ann. Biochem. 31: 146148.CrossRefGoogle Scholar
Briegel, H., and Lea, A.O.. 1979. Influence of the endocrine system on tryptic activity in female Aedes aegypti. J. Insect Physiol. 25: 227230.CrossRefGoogle Scholar
Briegel, H., Lea, A.O., and Klowden, M.J.. 1978. Hemoglobinometry as a method for measuring blood meal sizes of mosquitoes. J. Med. Ent. 15: 235238.CrossRefGoogle Scholar
Chavira, R. Jr., Brunett, T.J., and Hageman, J.H.. 1984. Assaying proteinases with Azocoll. Anal. Biochem. 136: 446450.CrossRefGoogle ScholarPubMed
Chen, P.S. 1978. Protein synthesis in relation to cellular activation and deactivation. pp. 145203in Rockstein, M. (Ed.), Insect Biochemistry. Academic Press, New York, San Francisco, and London.CrossRefGoogle Scholar
Downe, A.E.R. 1975. Internal regulation of rate of digestion in the mosquito Aedes aegypti. J. Insect Physiol. 21: 18351839.CrossRefGoogle ScholarPubMed
Edman, J.D. 1970. Rate of digestion of vertebrate blood in Aedes aegypti (L.). Effect of age, mating and parity. Am. J. Trop. Med. Hyg. 19: 10311033.CrossRefGoogle ScholarPubMed
Erlanger, B.F., Kokowsky, N., and Cohen, W.. 1961. The preparation and properties of two chromogenic substrates for trypsin. Arch. Biochem. Biophys. 95: 271278.CrossRefGoogle ScholarPubMed
Freyvogel, T.A., and Staubli, W.. 1965. The formation of the peritrophic membrane in Culicidae. Acta Trop. 22: 118147.Google ScholarPubMed
Gander, E. 1968. Zur Histochemie und histologie des mitteldarmes von Aedes aegypti und Anopheles stephensi in zusammenhang mit den blutverdauung. Acta Trop. 25: 132175.Google Scholar
Gooding, R.H. 1966. In vitro properties of proteinases in the midgut of adult Aedes aegypti L. and Culex fatigans (Wiedemann). Comp. Biochem. Physiol. 17: 115127.CrossRefGoogle ScholarPubMed
Gooding, R.H. 1974. Digestive processes of haematophagous insects. V. Inhibitors of trypsin from Glossina morsitans morsitans (Diptera: Glossinidae). Can. Ent. 106: 3944.CrossRefGoogle Scholar
Huang, C.T. 1971 a. Vertebrate serum inhibitors of Aedes aegypti trypsin. Insect Biochem. 1: 207227.CrossRefGoogle Scholar
Huang, C.T. 1971 b. The interactions of Aedes aegypti (L.) trypsin with its two inhibitors found in bovine serum. Insect Biochem. 1: 207227.CrossRefGoogle Scholar
Klowden, M.J. 1979. Blood intake by Aedes aegypti not regulated by insemination. J. Insect Physiol. 25: 349351.CrossRefGoogle Scholar
Kunz, P.A. 1978. Resolution and properties of the proteinases in adult Aedes aegypti (L.). Insect Biochem. 8: 169175.CrossRefGoogle Scholar
Leahy, M.C., and Graig, G.B. Jr., 1965. Accessory gland substance as a stimulation for oviposition in Aedes aegypti and A. albopictus. Mosquito News 25: 448452.Google Scholar
Legowski, St., and Boroviczeny, K.G. v.. 1962. Exakte Hamoglobinestimmung in der taglichen Praxis. Dtsch. Med. Wochenschr. 87: 19531960.CrossRefGoogle Scholar
Redington, B.C., and Hockmeyer, W.T.. 1976. A method for estimating blood meal volume in Aedes aegypti using a radioisotope. J. Insect Physiol. 22: 961966.CrossRefGoogle ScholarPubMed
Yang, Y.J., and Davies, D.M.. 1971. Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J. Insect Physiol. 17: 117131.CrossRefGoogle ScholarPubMed
Young, A.D.M., and Downe, A.E.R.. 1979. Quantitative assesment with radiotracers of sperm transfer by male Aedes aegypti (Diptera: Culicidae). J. Med. Ent. 15: 259264.CrossRefGoogle Scholar
Young, A.D.M., and Downe, A.E.R.. 1982. Renewal of sexual receptivity in mated female mosquitoes Aedes aegypti. Physiol. ent. 7: 467471.CrossRefGoogle Scholar
Young, A.D.M., and Downe, A.E.R.. 1983. Influence of mating on sexual receptivity in the mosquito Culex tarsalis. Physiol. Ent. 8: 213217.CrossRefGoogle Scholar