Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:00:15.071Z Has data issue: false hasContentIssue false

MODELLING OVIPOSITION OF THE HOUSE FLY (DIPTERA: MUSCIDAE)1

Published online by Cambridge University Press:  31 May 2012

T.J. Lysyk
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, Canada T1J 4B1

Abstract

The relationship between temperature and ovarian development rates, as well as the cumulative probability of a female becoming gravid, were determined for the house fly, Musca domestica (L.), based on previously published information. These relationships were combined to form a model that simulates oviposition of house fly populations using average daily temperatures, eggs per cycle, and daily survival as input. Simulation results were compared with observed oviposition in three caged populations of house flies exposed to field temperatures. A high correlation occurred between simulated and observed eggs laid (r = 0.88), as well as between simulated and observed lxmx (r = 0.91). The model overestimated the onset of oviposition for one population, but closely simulated the timing of oviposition for the other two. The model also tended to overestimate the reproductive contribution of flies during the second and subsequent ovarian cycles.

Résumé

Le rapport entre température et les taux de développement des ovaires, ainsi que la probabilité cumulative d’une femelle à devenir pleine, ont été déterminés à partir des informations publiées au préalable, dans le cas de la mouche domestique, Musca domestica (L.). Ces rapports ont été réunis pour former un modèle qui simule les pontes des populations de mouche domestique, en utilisant comme données en entrée, les températures journalières moyennes, le nombre d’oeufs par cycle, et la survie journalière. Les résultats de simulation ont été comparés à la ponte constatée dans trois populations de mouches domestiques en cages, exposées aux températures du champs. Une corrélation étroite a eu lieu entre les pontes simulées et constatées (r = 0,88), ainsi qu’entre lxmx (r = 0,91). Le modèle a surévalué le commencement de la ponte d’une population, mais l’a simulé de près en ce qui concernait les deux autres populations. Le modèle aussi a eu tendance de surévaluer la contribution reproductrice des mouches pendant le deuxième cycle ovarien et les suivants.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.R. 1964. Methods for distinguishing nulliparous from parous flies and for estimating the ages of Fannia canicularis and some other cyclorraphous Diptera. Ann. ent. Soc. Am. 57: 226236.CrossRefGoogle Scholar
Elvin, M.K., and Krafsur, E.S.. 1984. Relationship between temperature and rate of ovarian development in the house fly, Musca domestica L. (Diptera: Muscidae). Ann. ent. Soc. Am. 77: 5055.CrossRefGoogle Scholar
Imai, C. 1984. Population dynamics of house flies, Musca domestica on experimentally accumulated refuse. Res. Popul. Ecol. 26: 353362.CrossRefGoogle Scholar
Krafsur, E.S. 1985. Age composition and seasonal phenology of house fly (Diptera: Muscidae) populations. J. med. Ent. 22: 515523.CrossRefGoogle Scholar
Kristiansen, K., and Skovmand, O.. 1985. A method for the study of population size and survival rate of house-flies. Entomologia exp. appl. 38: 145150.CrossRefGoogle Scholar
Lysyk, T.J. 1989. A multiple-cohort model for simulating jack pine budworm (Lepidoptera: Tortricidae) development under variable temperature conditions. Can. Ent. 121: 373387.CrossRefGoogle Scholar
Lysyk, T.J., and Axtell, R.C.. 1986. Estimating numbers and survival of house flies (Diptera: Muscidae) with mark/recapture methods. J. econ. Ent. 79: 10161022.CrossRefGoogle ScholarPubMed
Taylor, C.E., and Sokal, R.R. 1976. Oscillations in housefly population sizes due to time lags. Ecology 57: 10601067.CrossRefGoogle Scholar