Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T21:21:46.617Z Has data issue: false hasContentIssue false

A MULTIPLE FUNNEL TRAP FOR SCOLYTID BEETLES (COLEOPTERA)

Published online by Cambridge University Press:  31 May 2012

B. S. Lindgren
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The multiple funnel trap, an efficient, collapsible, non-sticky trap for scolytid beetles, consists of a series of vertically aligned funnels with a collecting jar at the bottom. The trap compared favorably with sticky traps and Scandinavian drainpipe traps for three species of ambrosia beetles and the mountain pine beetle. Minimum maintenance required for this trap allows for high efficiency in pheromone-based research, survey, and mass trapping of scolytid beetles.

Résumé

Le piège à entonnoirs multiples, un piège à scolytes non collant et escamotable, est fait d'un ensemble d'entonnoirs alignés verticalement avec un bocal collecteur à la base. Le piège s'est comparé avantageusement aux pièges collants ou aux pièges Scandinaves à tuyaux de drainage, pour la capture de trois espèces de scolytes du bois et du dendroctone du pin ponderosa. Le peu d'entretien requis pour ce piège lui confère une efficacité élevée en recherche sur les phéromones, pour la surveillance des populations ou la capture en masse des scolytes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

References

Bakke, A. and Sæther, T.. 1978. Granbarkbillen kan fanges i rørfeller. Skogeieren 65(11): 10.Google Scholar
Borden, J. H., King, C. J., Lindgren, S., Chong, L., Gray, D. R., Oehlschlager, A. C., Slessor, K. N., and Pierce, H. D. Jr., 1982. Variation in the response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environ. Ent. 11: 403408.CrossRefGoogle Scholar
Browne, L. E. 1978. A trapping system for the western pine beetle using attractive pheromones. J. chem. Ecol. 4: 261275.CrossRefGoogle Scholar
Chapman, J. A. and Kinghorn, J. M.. 1955. Window flight traps for insects. Can. Ent. 87: 4647.CrossRefGoogle Scholar
Kerck, K. 1972. Äthylalkohol und Stammkontur als Komponenten der Primäranlockung bei Xyloterus domesticus L. (Col.: Scolytidae). Naturwissenschaften 59: 423.CrossRefGoogle Scholar
Lie, R. and Bakke, A.. 1981. Practical results from the mass-trapping of Ips typographus in Scandinavia. pp. 175–181 in Mitchell, E. R. [Ed.], Management of Insect Pests with Semiochemicals: Concepts and Practice. Plenum Press, New York and London. 514 pp.Google Scholar
Lindgren, B. S. 1982. Pheromone-based management of ambrosia beetles in timber processing areas on Vancouver Island. Ph.D. Thesis, Simon Fraser University, Burnaby, B.C.147 pp.Google Scholar
Lindgren, B. S., Borden, J. H., Chong, L., Friskie, L. M., and Orr, D. B.. 1983. Factors influencing the efficiency of pheromone-baited traps for three species of ambrosia beetles (Coleoptera: Scolytidae). Can. Ent. 115: 303313.CrossRefGoogle Scholar
McLean, J. A. and Borden, J. H.. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. J. econ. Ent. 72: 165172.CrossRefGoogle Scholar
Vité, J. P. and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar
Wilkening, A. J., Foltz, J. L., Atkinson, T. H., and Connor, M. D.. 1981. An omnidirectional flight trap for ascending and descending insects. Can. Ent. 113: 453455.Google Scholar