Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:49:01.020Z Has data issue: false hasContentIssue false

Nesting biology and DNA barcode analysis of Ceratina dupla and C. mikmaqi, and comparisons with C. calcarata (Hymenoptera: Apidae: Xylocopinae)

Published online by Cambridge University Press:  03 January 2012

J.L. Vickruck*
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
S.M. Rehan
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
C.S. Sheffield
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
M.H. Richards
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
*
1Corresponding author (e-mail: jess.vickruck@brocku.ca).

Abstract

Using DNA barcode analysis, nest collections, and pan-trapping we compared molecular differences, nesting behaviour, and phenology of three of the four species of Ceratina Latreille present in the Niagara Region of southern Ontario, Canada: C. dupla Say, C. calcarata Robertson, and C. mikmaqi Rehan and Sheffield. Ceratina dupla and C. mikmaqi were separated by five fixed nucleotide differences and an average sequence divergence of 1.86%. In our population, C. mikmaqi and C. calcarata were common and C. dupla was rare. Ceratina dupla nested earlier than C. mikmaqi and C. calcarata, and sometimes produced a second brood in late July – early August. Each species constructed linear nests in the pith of dead twigs, C. mikmaqi and C. dupla usually in Fuller's teasel (Dipsacus fullonum L.; Dipsacaceae) and C. calcarata usually in raspberry (Rubus L.; Rosaceae). Genetically distinct, each species occupies a slightly different niche in the Niagara bee assemblage.

Résumé

À l'aide d'une analyse des codes de barre d'ADN, de récoltes de nids et de piégeage avec des plateaux, nous comparons les différences moléculaires, le comportement de nidification et la phénologie de trois des quatre espèces de Ceratina Latreille présentes dans la région de Niagara du sud de l'Ontario, Canada, soit C. dupla Say, C. calcarata Robertson et C. mikmaqi Rehan et Sheffield. Ceratina dupla et C. mikmaqi se distinguent par des différences fixes dans cinq nucléotides et la divergence moyenne de leurs séquences est de 1,86 %. Dans notre peuplement, C. mikmaqi et C. calcarata sont communs, alors que C. dupla est rare. Ceratina dupla niche plus tôt que C. mikmaqi et C. calcarata et produit quelquefois une seconde portée à la fin de juillet — début d'août. Chaque espèce construit un nid linéaire dans la moelle de brindilles mortes, C. mikmaqi et C. dupla généralement de cardère des foulons (Dipsacus fullonum L.; Dipsacaceae) et C. calcarata de framboisiers (Rubus L.; Rosaceae). Chacune des espèces, génétiquement distincte, occupe une niche légèrement différente au sein du peuplement d'abeilles de la région de Niagara.

[Traduit par la Rédaction]

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cartar, R.V. 1992. Morphological senescence and longevity: an experiment relating wing wear and life span foraging wild bumble bees. Journal of Animal Ecology, 61: 225231. doi:10.2307/5525.Google Scholar
Chandler, L. 1975. Eusociality in Ceratina calcarata Robertson (Hymenoptera: Anthophoridae). Proceedings of the Indiana Academy of Science, 84: 283284.Google Scholar
Comstock, A.B. 1911. Handbook of nature study. Comstock Publishing Associates, Ithaca, New York.Google Scholar
Daly, H.V. 1966. Biological studies on Ceratina dallatoreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). Annals of the Entomological Society of America, 59: 11381154.Google Scholar
Daly, H.V. 1973. Bees of the genus Ceratina in America north of Mexico. University of California Press, Berkeley, California.Google Scholar
Excoffier, L.Laval, G.Schneider, S. 2005. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 4750.Google Scholar
Friesen, V.L.Smith, A.L.Gomez-Diaz, E.Bolton, M.Furness, R.W.Gonzalez-Solis, J.Monteiro, L.R. 2007. Sympatric speciation by allochrony in a seabird. Proceedings of the National Academy of Sciences of the United States of America, 104: 1858918594. doi:10.1073/pnas.0700446104.CrossRefGoogle Scholar
Grothaus, H.G. 1962. The biology of the species of Ceratina (Hymenoptera, Xylocopidae) in Indiana. M.S. thesis, Purdue University, West Lafayette, Indiana.Google Scholar
Hall, T.A. 1999. Bioedit: a user friendly biological sequence alignment editor and alignment program for Windows 95/98 NT. Nucleic Acid Symposium Series, 41: 9598.Google Scholar
Hajibabaei, M.deWaard, J.R.Ivanova, N.V.Ratnasingham, S.Dooh, R.T.Kirk, S.L. et al. 2005. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society of London B Biological Sciences, 360: 19591967. doi: 10.1098/rstb.2005.1727.Google Scholar
Hebert, P.D.N.Stoeckle, M.Y.Zemlak, T.S.Francis, C.M. 2004. Identification of birds through DNA barcodes. PLoS Biology, 2:e312. doi: 10.i.S7i;journal.pbio.0020312.Google Scholar
Ivanova, N.deWaard, J.Hebert, P. 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6: 9981002. doi: 10.1111/j.1471-8286.2006.01428.x.Google Scholar
Johnson, M.D. 1988. The relationship of provision weight to adult weight and sex ratio in the solitary bee, Ceratina calcarata. Ecological Entomology, 13: 165170. doi:10.1111/j.1365-2311.1988.tb00344.x.CrossRefGoogle Scholar
Johnson, M.D. 1990. Female size and fecundity in the small carpenter bee, Ceratina calcarata (Robertson) (Hymenoptera: Anthophoridae). Journal of the Kansas Entomological Society, 63: 414419.Google Scholar
Kislow, C.J. 1976. The comparative biology of two species of small carpenter bee, Ceratina strenua F. Smith and C. calcarata Robertson (Hymenoptera: Xylocopinae). Ph.D. thesis, University of Georgia, Athens, Georgia.Google Scholar
LeBuhn, G.Droege, S.Griswold, T.L.Minckley, R.L.Roulston, T.Cane, J.H. et al. 2003. Standardized method for monitoring bee populations — the bee inventory (BI) plot [online]. Available from http://online.sfsu.edu/beeplot/pdfs/Bee%20Plot%202003.pdf [accessed September 2008].Google Scholar
Michener, C.D. 1985. From solitary to eusocial – need there be a series of intervening species? Fortschritte der Zoologie, 31: 293305.Google Scholar
Packer, L.Gravel, A.-I.D.Lebuhn, G. 2007. Phenology and social organization of Halictus (Seladonia) tripartitus (Hymenoptera: Halictidae). Journal of Hymenoptera Research, 16: 281292.Google Scholar
Peterson, J.H.Roitberg, B.D. 2006a. Impacts on flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata. Behavioural Ecology and Sociobiology, 59: 589596. doi: 10.1007/s00265-005-0085-9.Google Scholar
Peterson, J.H.Roitberg, B.D. 2006b. Impact of resource levels on sex ratio and resource allocation in the solitary bee, Megachile rotundata. Environmental Entomology, 35: 1404–14. doi:10.1603/0046-225X(2006)35[1404:IORLOS]2.0.CO;2.Google Scholar
Quinn, T.P.Unwin, M.J.Kinnison, M.T. 2000. Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced chinook salmon populations. Evolution, 54: 13721385. doi: 10.1554/0014-3820(2000)054[1372:EOTIIT]2.0.CO;2.Google Scholar
Rau, P. 1928. The nesting habits of the little carpenter bee, Ceratina calcarata. Annals of the Entomological Society of America, 21: 380396.Google Scholar
Rector, B.G.Harizanova, V.Sforza, R.Widmer, T.Wiedenmann, R.N. 2006. Prospects for biological control of teasels, Dipsacus spp., a new target in the United States. Biological Control, 36: 114. doi: 10.1016/j.biocontrol.2005.09.010.CrossRefGoogle Scholar
Rehan, S.M.Richards, M.H. 2008. Morphological and DNA sequence delineation of two problematic species of Ceratina (Hymenoptera: Apidae) from Eastern Canada. Journal of the Entomological Society of Ontario, 139: 5967.Google Scholar
Rehan, S.M.Richards, M.H. 2010. Nesting biology and subsociality in the small carpenter bee, Ceratina calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 142: 6574. doi: 10.4039/n09-056.Google Scholar
Rehan, S.M.Sheffield, C.S. 2011. Morphological and molecular delineation of a new species and new combination in the Ceratina dupla species-group (Hymenoptera: Apidae) of eastern North America. Zootaxa. In press.CrossRefGoogle Scholar
Rehan, S.M.Chapman, T.W.Craigie, A.I.Richards, M.H.Cooper, S.J.B.Schwarz, M.P. 2010. Molecular phylogeny of the small carpenter bees (Hymenoptera: Apidae: Ceratinini) indicates early and rapid global dispersal. Molecular Phylogenetics and Evolution, 55: 10421054. doi: 10.1016/j.ympev.2010.01.011.Google Scholar
Rice, W.R. 1987. Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evolutionary Ecology, 1: 301314. doi: 10.1007/BF02071555.CrossRefGoogle Scholar
Richards, M.H.Vickruck, J.L.Rehan, S.M. 2010. Colony social organisation of Halictus confusus in southern Ontario, with comments on sociality in the subgenus H. (Seladonia). Journal of Hymenoptera Research, 19: 144158.Google Scholar
Richards, M.H.Rutgers-Kelly, A.Gibbs, J.Vickruck, J.L.Rehan, S.M.Sheffield, C. 2011. Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario. The Canadian Entomologist 143: 280300.CrossRefGoogle Scholar
Rutgers-Kelly, A. 2003. The bees of Niagara: a test of the intermediate disturbance hypothesis. M.Sc. thesis, Brock University, St., Catharines, Ontario.Google Scholar
Sakagami, S.F.Maeta, Y. 1977. Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Sociaux, 24: 319343. doi: 10.1007/BF02223784.Google Scholar
SAS Institute Inc. 2004. SAS version 9.1 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sheffield, C.S.Hebert, P.D.N.Kevan, P.G.Packer, L. 2009. DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 1: 196207. doi: 10.1111/j.1755-0998.2009.02645.x.Google Scholar
Thompson, J.D.Higgins, D.G.Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 46734680. doi:10.1093/nar/22.22.4673.CrossRefGoogle ScholarPubMed
Zurbuchen, A.Cheesman, S.Klaiber, J.Mueller, A.Hein, S.Dorn, S. 2010. Long foraging distances impose high costs on offspring production in solitary bees. Journal of Animal Ecology, 79: 674681. doi: 10.1111/j.1365-2656.2010.01675.x.Google Scholar