Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:54:15.023Z Has data issue: false hasContentIssue false

Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae)

Published online by Cambridge University Press:  02 April 2012

Sandra M. Rehan*
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
Miriam H. Richards
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
*
1 Corresponding author (e-mail: sandra.rehan@gmail.com).

Abstract

To evaluate sociality in small carpenter bees (Ceratina Latreille), we studied the life history and nesting biology of a common eastern North American species, Ceratina (Zadontomerus) calcarata Robertson. Pan-trap and nest collections throughout the active season (May to September 2006) were used to assess C. calcarata’s seasonal phenology and nesting biology in southern Ontario. Adults overwintered in their natal nests. Males emerged in early May and occupied preexisting hollows in twigs and stems. Females emerged from hibernacula 2 weeks later, founding new nests. Nest founding and provisioning occurred throughout the spring; females remained with developing brood through the summer. Complete nests contained, on average, 6.9 offspring, with egg-to-adult development averaging 46 days. Ceratina calcarata is subsocial rather than solitary: mothers are long-lived and nest-loyal, and care for offspring from egg to adulthood. Subsociality is found in all behaviourally classified small carpenter bees, while some species cross the boundary into social life, making Ceratina an important genus for the study of the transition between solitary and social life.

Résumé

Afin d'évaluer la socialité des petites fourmis charpentières (Ceratina Latreille), nous avons étudié le cycle biologique et la biologie de la nidification chez une espèce commune de l'est de l'Amérique du Nord, C. (Zadontomerus) calcarata Robertson. Nous avons utilisé des pièges à cuvette et des récoltes de nids durant toute la saison active (mai à septembre 2006) pour déterminer la phénologie saisonnière et la biologie de la nidification chez C. calcarata dans le sud de l'Ontario. Les adultes passent l'hiver dans le nid où ils sont nés. Les mâles émergent au début de mai et occupent des cavités préexistantes dans les ramilles et les tiges. Les femelles émergent des hibernacles deux semaines plus tard et fondent de nouveaux nids. La fondation et l'approvisionnement des nids se poursuivent pendant tout le printemps et les femelles demeurent avec le couvain en développement pendant tout l'été. Les nids complets contiennent en moyenne 6,9 rejetons et le développement de l'œuf à l'adulte prend en moyenne 46 jours. Ceratina calcarata est subsocial plutôt que solitaire; les femelles vivent longtemps, sont fidèles au nid et s’occupent des petits, de l'œuf à l'adulte. On retrouve de la subsocialité chez toutes les fourmis classées comme petites charpentières d'après leur comportement, bien que certaines espèces passent la frontière vers la vie sociale, ce qui fait de Ceratina un taxon important pour l'étude des transitions de la vie solitaire à la vie sociale.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M. 1984. The evolution of eusociality. Annual Review of Ecology and Systematics, 15: 165189.CrossRefGoogle Scholar
Cartar, R. 1992. Morphological senescence and longevity: an experiment relating wing wear and life span in foraging wild bumble bees. Journal of Animal Ecology, 61: 225231. doi:10.2307/5525.CrossRefGoogle Scholar
Chandler, L. 1975. Eusociality in Ceratina calcarata Robertson. Proceedings of the Indiana Academy of Science, 84: 283284.Google Scholar
Crespi, B.J. 1994. Three conditions for the evolution of eusociality: are they sufficient? Insectes Sociaux, 41: 395400. doi:10.1007/BF01240642.CrossRefGoogle Scholar
Daly, H.V. 1966. Biological studies on Ceratina dallatoreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). Annals of the Entomological Society of America, 59: 11381154.CrossRefGoogle Scholar
Daly, H.V. 1967. Natural enemies of bees of the genus Ceratina (Hymenoptera: Apoidea). Annals of the Entomological Society of America, 60: 12731282.CrossRefGoogle Scholar
Daly, H.V. 1973. Bees of the genus Ceratina in America north of Mexico. University of California Press, Berkeley, California.Google Scholar
Evans, H.E. 1977. Extrinsic and intrinsic factors in the evolution of insect eusociality. BioScience, 27: 613617. doi:10.2307/1297657.CrossRefGoogle Scholar
Grothaus, R.H. 1962. The biology of the species of Ceratina (Hymenoptera, Xylocopidae) in Indiana. M.S. thesis, Purdue University, West Lafayette, Indiana.Google Scholar
Johnson, M.D. 1988. The relationship of provision weight to adult weight and sex ratio in the solitary bee, Ceratina calcarata. Ecological Entomology, 13: 165170. doi:10.1111/j.1365-2311.1988.tb00344.x.CrossRefGoogle Scholar
Johnson, M.D. 1990. Female size and fecundity in the small carpenter bee, Ceratina calcarata (Robertson) (Hymenoptera, Anthophoridae). Journal of the Kansas Entomological Society, 63: 414419.Google Scholar
Kislow, C.J. 1976. The comparative biology of two species of small carpenter bees, Ceratina strenua F. Smith and C. calcarata Robertson. Ph.D. thesis, University of Georgia, Athens, Georgia.Google Scholar
Lin, N., and Michener, C. 1972. Evolution of sociality in insects. Quarterly Review of Biology, 47: 131159. doi:10.1086/407216.CrossRefGoogle Scholar
Michener, C.D. 1969. Comparative social behavior of the bees. Annual Review of Entomology, 14: 299342. doi:10.1146/annurev.en.14.010169.001503.CrossRefGoogle Scholar
Michener, C.D. 1979. Biogeography of the bees. Annals of the Missouri Botanical Garden, 66: 277347. doi:10.2307/2398833.CrossRefGoogle Scholar
Michener, C.D. 1985. From solitary to eusocial — need there be a series of intervening species? Fortschritte der Zoologie, 31: 293305.Google Scholar
Michener, C. D. 2007. The bees of the world. 2nd ed. The John Hopkins University Press, Baltimore, Maryland.CrossRefGoogle Scholar
Packer, L., Gravel, A., and Lebuhn, G. 2007. Phenology and social organization of Halictus (Seladonia) tripartitus (Hymenoptera: Halictidae). Journal of Hymenoptera Research, 16: 281292.Google Scholar
Rau, P. 1928. The nesting habits of the little carpenter-bee, Ceratina calcarata. Annals of the Entomological Society of America, 21: 380396.CrossRefGoogle Scholar
Rehan, S., and Richards, M.H. 2008. Morphological and DNA sequence delineation of two problematic species of Ceratina (Hymenoptera: Apidae) from eastern Canada. Journal of the Entomological Society of Ontario, 139: 5967.Google Scholar
Rehan, S., Richards, M.H., and Schwarz, M.P. 2009. Evidence of social nesting in the Ceratina of Borneo. Journal of the Kansas Entomological Society, 82: 194209. doi:10.2317/JKES809.22.1.CrossRefGoogle Scholar
Richards, M.H. 2001. Nesting biology and social organization of Halictus sexcinctus (Fabricius) in southern Greece. Canadian Journal of Zoology, 79: 22102220. doi:10.1139/cjz-79-12-2210.CrossRefGoogle Scholar
Rust, R. 1991. Size–weight relationship in Osmia lignaria propinqua Cresson (Hymenoptera: Megachilidae). Journal of the Kansas Entomological Society, 57: 639656.Google Scholar
Sakagami, S.F., and Laroca, S. 1971. Observations on the bionomics of some Neotropical xylocopine bees, with comparative and biofaunistic notes (Hymenoptera, Anthophoridae). Journal of the Faculty of Science, Hokkaido University, Series VI, Zoology, 18: 57127. doi:10.1007/BF02223784.Google Scholar
Sakagami, S.F., and Maeta, Y. 1977. Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Sociaux, 24: 319343.CrossRefGoogle Scholar
Sakagami, S.F., and Maeta, Y. 1984. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). Journal of the Kansas Entomological Society, 57: 639656.Google Scholar
Sakagami, S.F., and Maeta, Y. 1987. Multifemale nests and rudimentary castes of an ‘almost’ solitary bee Ceratina flavipes, with additional observations on multifemale nests of Ceratina japonica (Hymenoptera, Apoidea). Kontyu, 55: 391409.Google Scholar
Sakagami, S.F., and Maeta, Y. 1989. Compatibility and incompatibility of solitary life with eusociality in two normally solitary bees Ceratina japonica and Ceratina okinawana (Hymenoptera, Apoidea), with notes on the incipient phase of eusociality. Japanese Journal of Entomology, 57: 417739.Google Scholar
Sakagami, S.F., and Maeta, Y. 1995. Task allocation in artificially induced colonies of a basically solitary bee Ceratina (Ceratinidia) okinawana, with a comparison of sociality between Ceratina and Xylocopa (Hymenoptera, Anthophoridae, Xylocopinae). Japanese Journal of Ecology, 63: 115150.Google Scholar
Soucy, S.L. 2002. Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Annals of the Entomological Society of America, 95: 5765. doi:10.1603/0013-8746(2002)095[0057:NBASPB] 2.0.CO;2.CrossRefGoogle Scholar
Tallamy, D.W., and Wood, T.K. 1986. Convergence patterns in subsocial insects. Annual Review of Entomology, 31: 369390. doi:10.1146/annurev.en.31.010186.002101.CrossRefGoogle Scholar
Wilson, E.O. 1971. The insect societies. Harvard University Press, Cambridge, Massachusetts.Google Scholar