Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T04:44:05.673Z Has data issue: false hasContentIssue false

Number of instars and sexual dimorphism of Tetropium fuscum (Coleoptera: Cerambycidae) larvae determined by maximum likelihood

Published online by Cambridge University Press:  08 August 2012

Abstract

Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae) is a Palaearctic wood borer that has been established in Atlantic Canada since at least 1990. Neither the number of instars nor methods for determining the instar of field-collected larvae have been documented for this species. Head-capsule width was measured for 949 T. fuscum larvae in order to determine the number of instars in this species, estimate the mean and variance of head-capsule widths associated with each instar, and identify whether head-capsule width is sexually dimorphic. Head-capsule width data were analysed using maximum likelihood analysis of mixture models and the Brooks–Dyar rule. Our results provide strong support for the existence of six larval instars, with sexually dimorphic head-capsule widths in instars five and six. The probability of misclassifying larvae into instar-specific and sex-specific categories ranged from 0.6% to 12.8%, with the highest probabilities occurring when assigning a sex to fifth-instar and sixth-instar larvae.

Résumé

Le Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae) est un insecte xylophage paléarctique qui est établi dans les provinces de atlantiques du Canada depuis au moins 1990. Ni le nombre de stades larvaires ni les méthodes permettant de déterminer le stade des larves récoltées sur le terrain n'ont été documentés pour cette espèce. La largeur de la capsule céphalique de 949 larves a été mesurée afin de déterminer le nombre de stades larvaires chez cette espèce, d'estimer la moyenne et la variance des valeurs de largeur de capsule céphalique associées à chaque stade et de vérifier si la largeur de la capsule céphalique diffère selon le sexe. Les données relatives à la largeur de la capsule céphalique ont été analysées à l'aide de la méthode du maximum de vraisemblance de modèles de mélange gaussiens et de la règle de Brooks–Dyar. Nos résultats confirment l'existence de six stades larvaires et indiquent que la largeur de la capsule céphalique diffère selon le sexe chez les larves de cinquième et de sixième stades. Le risque de se méprendre sur l’âge et le sexe d'une larve variait entre 0,6%–12,8%, les risques d'erreurs les plus élevés étant associés à la détermination du sexe des larves de cinquième et de sixième stades.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, I. 1994. Development and life cycle of Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) on citrus trees under fluctuating and constant temperature regimes. Applied Entomology and Zoology, 29: 485497.CrossRefGoogle Scholar
Akaike, H. 1978. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30: 914.CrossRefGoogle Scholar
Brooks, W.K. 1886. Report on the Stomatopoda. Report of the scientific results of the voyage of H. M. S. Challenger during the years 1873–76, zoology part XLV. Longman and Company, London.Google Scholar
Burnham, K.P. Anderson, D.R. 2002. Model selection and multimodel inference: a practical information–theoretical approach, 2nd ed. Springer-Verlag, New York.Google Scholar
Craig, D.A. 1975. The larvae of Tahitian Simuliidae (Diptera: Nematocera). Journal of Medical Entomology, 12: 463476.CrossRefGoogle ScholarPubMed
Craighead, F.C. 1923. North American cerambycid larvae: a classification and the biology of North American cerambycid larvae. Bulletin no. 27, Dominion of Canada, Department of Agriculture, Ottawa.CrossRefGoogle Scholar
De Oliviera, D. Durand, M. 1978. Head-capsule growth in Culex territans Walker. Mosquito News, 38: 230233.Google Scholar
Dyar, H.G. 1890. The number of molts of lepidopterous larvae. Psyche, 5: 420422.CrossRefGoogle Scholar
Flaherty, L., Sweeney, J.D., Pureswaran, D., Quiring, D.T. 2011. Influence of host tree condition on the performance of Tetropium fuscum (Coleoptera: Cerambycidae). Environmental Entomology, 40: 12001209.CrossRefGoogle ScholarPubMed
Floater, G.J. 1996. The Brooks–Dyar rule and morphometrics of the processionary caterpillar Ochrogaster lunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae). Australian Journal of Entomology, 35: 271278.CrossRefGoogle Scholar
Gaines, J.C. Campbell, F.L. 1935. Dyar's rule as related to the number of instars of the corn ear worm, Heliothis obsolete (Fab.), collected in the field. Annals of the Entomological Society America, 28: 445461.CrossRefGoogle Scholar
Hunt, G. Chapman, R.E. 2001. Evaluating hypotheses of instar grouping in arthropods: a maximum likelihood approach. Paleobiology, 27: 466484.2.0.CO;2>CrossRefGoogle Scholar
Hutchinson, G.E. Tongring, N. 1984. The possible adaptive significance of the Brooks–Dyar rule. Journal of Theoretical Biology, 106: 437439.CrossRefGoogle Scholar
Johnson, T.A. Williamson, R.C. 2006. Multiple morphological measurements as larval indicators for Saperda vestita (Coleoptera: Cerambycidae). Annals of the Entomological Society of America, 99: 938944.CrossRefGoogle Scholar
Juutinen, P. 1955. Zur biologie und forstlichen bedeutung der fichenbocke (Tetropium Kirby) in Finnland. Acta Entomologica Fennica, 11: 1112.Google Scholar
Kishi, Y. 1971. Reconsideration of the method to measure the larval instars by use of the frequency distribution of head-capsule widths or lengths. The Canadian Entomologist, 103: 10111015.CrossRefGoogle Scholar
Logan, J.A., Bentz, B.J., Vandygriff, J.C., Turner, D.L. 1998. General program for determining instar distributions from headcapsule widths: example analysis of mountain pine beetle (Coleoptera: Scolytide [sic]) data. Environmental Entomology, 27: 555563.CrossRefGoogle Scholar
McClellan, Q.C. Logan, J.A. 1994. Instar determination for the gypsy moth (Lepidoptera: Lymantriidae) based on the frequency distribution of head capsule widths. Environmental Entomology, 23: 248253.CrossRefGoogle Scholar
McGugan, B.M. 1954. Needle mining habits and larval instars of the spruce budworm. The Canadian Entomologist, 86: 439454.CrossRefGoogle Scholar
Mizell, R.F. Nebeker, T.E. 1979. Number of instars of the southern pine beetle (Coleoptera: Scolytidae) and some comparisons of head-capsule widths. Annals of the Entomological Society of America, 72: 313316.CrossRefGoogle Scholar
Pearson, J.D., Morrell, C.H., Brant, L.J. 1992. Mixture models for investigating complex distributions. Journal of Quantitative Anthropology, 3: 325345.Google Scholar
Pershing, J.C. Linit, M.J. 1988. Variation in the number of instars of Monochamus carolinensis (Coleoptera: Cerambycidae). Journal of the Kansas Entomological Society, 61: 370378.Google Scholar
Peterson, A. Haeussler, G.J. 1928. Some observations on the number of larval instars of the oriental peach moth, Laspeyresia molesta Busck. Journal of Economic Entomology, 21: 843852.CrossRefGoogle Scholar
SAS Institute. 2002–2003. Proprietary software release 9.1. SAS Institute Inc., Cary, North Carolina, United States of America.Google Scholar
Schimitschek, E. 1929. Tetropium gabrieli Weise und Tetropium fuscum F. Ein beitrag zu ihrer Lebensgeneinsamschaft. Zeitschrift für Angewandte Entomologie, 15: 229334.CrossRefGoogle Scholar
Smith, G. Humble, L.M. 2000. The brown spruce longhorn beetle. Exotic Forest Pest Advisory 5. Natural Resources Canada, Canadian Forest Service – Pacific Forestry Centre, Victoria, British Columbia. pp. 1–5.Google Scholar
Smith, G. Hurley, J.E. 2000. First North American record of the Palearctic species Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae). The Coleopterists Bulletin, 54: 540.CrossRefGoogle Scholar