Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:56:33.620Z Has data issue: false hasContentIssue false

Parasitism of a successful weed biological control agent, Neogalerucella calmariensis

Published online by Cambridge University Press:  02 April 2012

Kathryn Norman
Affiliation:
Department of Biology, Carleton University, 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
Naomi Cappuccino*
Affiliation:
Department of Biology, Carleton University, 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
Mark R. Forbes
Affiliation:
Department of Biology, Carleton University, 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
*
1Corresponding author (e-mail: naomi_cappuccino@carleton.ca).

Abstract

We investigated parasitism of the purple loosestrife beetle, Neogalerucella calmariensis (L.) (Coleoptera: Chrysomelidae), an introduced weed biological control agent, at 13 sites in eastern Ontario and western Quebec, Canada. Beetles were parasitized by gregarine gut protozoans (Apicomplexa: Eugregarinida) and much less commonly by nematodes (Nematoda: probably Mermithidae) and ectoparasitic mites (Acari: Erythraeidae). Female beetles had more gregarines than did males and the gregarine load was marginally higher in individuals from the original release sites than in individuals from recently colonized sites. Despite its overall success as a biological control agent, N. calmariensis harbours a substantial parasite load.

Résumé

Nous étudions le parasitisme chez Neogalerucella calmariensis (L.) (Coleoptera: Chrysomelidae), un agent introduit de lutte biologique contre les mauvaises herbes, à 13 sites de l’est de l’Ontario et de l’ouest du Québec, Canada. Les coléoptères sont parasités par des protozoaires intestinaux (grégarines (Apicomplexa: Eugregarinida)) et, moins couramment, par des nématodes (Nematoda: probablement Mermithidae) et des acariens ectoparasites (Acari: Erythraeidae). Les coléoptères femelles portent plus de grégarines que les mâles et la charge de grégarines est légèrement plus élevée chez les individus provenant des sites originaux de libération que chez les individus des sites colonisés récemment. Malgré son succès global comme agent de lutte biologique, Neogalerucella calmariensis porte une importante charge parasitaire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.M., and May, R.M. 1979. Population biology of infectious diseases: Part I. Nature (London), 280(5721): 361367 PMID:460412 doi:10.1038/280361a0.CrossRefGoogle ScholarPubMed
Corrigan, J. 2004. “Ten Years After”—a summary of results for the 2004 tour of release sites from the 1992–1997 Galerucella spp. biological control programs in Ontario. Ontario Ministry of Natural Resources, Toronto, Ontario.Google Scholar
Cosse, A.A. 2004. The presence of tibial spurs as a male sexual characteristic for Galerucella calmariensis (Coleoptera: Chrysomelidae). Journal of Entomological Science, 39: 281283.CrossRefGoogle Scholar
Denoth, M., and Myers, J.H. 2005. Variable success of biological control of Lythrum salicaria in British Columbia. Biological Control, 32: 269279 doi:10.1016/j.biocontrol.2004.10.006.CrossRefGoogle Scholar
Ehler, L.E. 1998. Invasion biology and biological control. Biological Control, 13(2): 127133 doi:10.1006/bcon.1998.0649.CrossRefGoogle Scholar
Goeden, R.D., and Louda, S.M. 1976. Biotic interference with insects imported for weed control. Annual Review of Entomology, 21(1): 325342 doi:10.1146/annurev.en.21.010176.001545.CrossRefGoogle Scholar
Hecker, K.R., Forbes, M.R., and Léonard, N.J. 2002. Parasitism of damselflies (Enallagma boreale) by gregarines: sex biases and relations to adult survivorship. Canadian Journal of Zoology, 80(1): 162168 doi:10.1139/z01-213.CrossRefGoogle Scholar
Hight, S.D., Blossey, B., Laing, J., and Declerck-Floate, R. 1995. Establishment of insect biological control agents from Europe against Lythrum salicaria in North America. Environmental Entomology, 24: 967977.CrossRefGoogle Scholar
Hunt-Joshi, T.R., Root, R.B., and Blossey, B. 2005. Disruption of weed biological control by an opportunistic mirid predator. Ecological Applications, 15(3): 861870 doi:10.1890/04-1336.CrossRefGoogle Scholar
Landis, D.A., Sebolt, D.C., Haas, M.J., and Klepinger, M. 2003. Establishment and impact of Galerucella calmariensis L. (Coleoptera: Chrysomelidae) on Lythrum salicaria L., and associated plant communities in Michigan. Biological Control, 28(1): 7891 doi:10.1016/S1049-9644(03)00055-0.CrossRefGoogle Scholar
Malecki, R.A., Blossey, B.B., Hight, S.D., Schroeder, D., Kok, L.T., and Coulson, J.R. 1993. Biological control of purple loosestrife. BioScience, 43(10): 680686 doi:10.2307/1312339.CrossRefGoogle Scholar
Manguin, S., White, R., Blossey, B., and Hight, S.D. 1993. Genetics, taxonomy, and ecology of certain species of Galerucella (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 86: 397410.CrossRefGoogle Scholar
McAvoy, T.J., and Kok, L.T. 2004. Temperature dependent development and survival of two sympatric species, Galerucella calmariensis and G. pusilla, on purple loosestrife. BioControl, 49(4): 467480 doi:10.1023/B:BICO.0000034611.30572.99.CrossRefGoogle Scholar
McEvoy, P.B. 2002. Insect–plant interactions on a planet of weeds. Entomologia Experimentalis et Applicata, 104(1): 165179 doi:10.1046/j.1570-7458.2002.01004.x.CrossRefGoogle Scholar
SAS Institute Inc. 2007. JMP. Version 7. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schooler, S.S., and McEvoy, P.B. 2006. Relationship between insect density and plant damage for the golden loosestrife beetle, Galerucella pusilla, on purple loosestrife (Lythrum salicaria). Biological Control, 36: 100105 doi:10.1016/j.bio-control.2005.07.010.CrossRefGoogle Scholar
Siva-Jothy, M.T., and Plaistow, S.J. 1999. A fitness cost of eugregarine parasitism in a damselfly. Ecological Entomology, 24(4): 465470 doi:10.1046/j.1365-2311.1999.00222.x.CrossRefGoogle Scholar
Slansky, F., and Scriber, J.M. 1985. Food consumption and utilization. In Comprehensive insect physiology, biochemistry and pharmacology. Vol. 4. Edited by Kerkut, G.A. and Gilbert, L.I.. Pergamon Press, Oxford, United Kingdom. pp. 87163.Google Scholar
Walde, S.J., and Murdoch, W.W. 1988. Spatial density dependence in parasitoids. Annual Review of Entomology, 33(1): 441466 doi:10.1146/annurev.en.33.010188.002301.CrossRefGoogle Scholar