Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:10:38.718Z Has data issue: false hasContentIssue false

Parasitoid complex and bionomics of Apanteles polychrosidis (Hymenoptera: Braconidae) on the ash leaf-cone roller (Lepidoptera: Gracillariidae)

Published online by Cambridge University Press:  14 June 2013

T.J. Wist*
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, CW 405 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
M.L. Evenden
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, CW 405 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
*
1Corresponding author (e-mail: wist@ualberta.ca). Subject editor: Keith Summerville

Abstract

The ash leaf-cone roller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) is an introduced leaf-mining moth of horticultural ash trees (Fraxinus Linnaeus; Oleaceae) in Western Canadian Prairie cities. Here, we identify the dominant parasitoid of this leaf-mining moth as Apanteles polychrosidis Vierek (Hymenoptera: Braconidae) and document its emergence pattern, courtship, mating, and host acceptance behaviours. Apanteles polychrosidis adult emergence is protandrous and mating occurs soon after female emergence. Male A. polychrosidis can mate multiple times in short sequence with a mean copulation time of 49 seconds. It is likely that A. polychrosidis overwinters in an alternate larval host, after emergence from C. fraxinella. Mated female A. polychrosidis readily parasitise an alternate host, the obliquebanded leafroller (Choristoneura rosaceana (Harris); Lepidoptera: Tortricidae), known to overwinter as larvae. Through rearing C. fraxinella pupae, we describe the remainder of the parasitoid complex of C. fraxinella, in order of parasitism rate, as Diadegma Förster (near Diadegmafenestrale (Holmgren)) (Hymenoptera: Ichneumonidae), three Sympiesis Förster species (Hymenoptera: Eulophidae) (Sympiesissericeicornis (Nees von Esenbeck), one near Sympiesisviridula (Thomson) and one unknown species), and Pteromalus phycidis (Ashmead) (Hymenoptera: Pteromalidae) and show that several Sympiesis species can be hyperparasitic on A. polychrosidis. Caloptilia fraxinella density within the tree canopy is highest in the lower canopy. Host density and abiotic factors such as temperature and light intensity do not influence the within-canopy distribution of most parasitoids except Sympiesis species, which preferred the northern canopy.

Résumé

L'enrouleuse en cône des feuilles de frêne, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), est un lépidoptère introduit, mineur des feuilles des frênes horticoles (Fraxinus Linnaeus: Oleaceae), dans les villes des Prairies de l'Ouest Canadien. Nous identifions Apanteles polychrosidis Vierek (Hymenoptera: Braconidae) comme le parasitoïde principal de ce papillon mineur de feuilles et décrivons son patron d’émergence et ses comportements de cour, d'accouplement et d'acceptation d'hôte. L’émergence des adultes d'Apanteles polychrosidis est protandrique et l'accouplement a lieu peu après l’émergence des femelles. Le mâle d’A. polychrosidis peut s'accoupler plusieurs fois en courte succession avec une durée moyenne des accouplements de 49 secondes. Il est probable qu’A. polychrosidis passe l'hiver dans une larve hôte d'espèce différente après son émergence de C. fraxinella. Les femelles accouplées d’A. polychrosidis parasitent volontiers un hôte de rechange après leur émergence de C. fraxinella, soit la tordeuse à bandes obliques (Choristoneura rosaceana (Harris); Lepidoptera: Tortricidae) qui passe l'hiver au stade larvaire. Des élevages de nymphes de C. fraxinella nous ont permis de décrire le reste du complexe parasitaire de C. fraxinella, soit par ordre de taux de parasitisme: Diadegma Förster (près de D. fenestrale (Holmgren)) (Hymenoptera: Ichneumonidae), trois espèces de Sympiesis Förster (Hymenoptera: Eulophidae) (Sympiesis sericeicornis (Nees von Esenbeck), une espèce près de Sympiesis viridula (Thomson) et une espèce inconnue) et Pteromalus phycidis (Ashmead) (Hymenoptera: Pteromalidae) et de démontrer que plusieurs espèces de Sympiesis peuvent devenir des hyperparasites d’A. polychrosidis. La densité de Caloptilia fraxinella dans le couvert arborescent est maximale dans la canopée inférieure. La densité des hôtes et les facteurs abiotiques, tels que la température et l'intensité lumineuse, n'influencent pas la répartition au sein de la canopée de la plupart des parasitoïdes, à l'exception des espèces de Sympiesis qui préfèrent la partie nord de la canopée.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 2013. E.H. Strickland Virtual Entomological Museum [online]. Available from http://entomology.museums.ualberta.ca/searching_species_details.php?s=5273 [accessed 17 March 2013].Google Scholar
Arakaki, N.Ganaha, Y. 1986. Emergence pattern and mating behavior of Apanteles flavipes (Cameron) (Hymenoptera: Braconidae). Applied Entomology and Zoology, 21: 382388.CrossRefGoogle Scholar
Askari, A.Coppel, H.C. 1978. Observations on courtship and mating behavior of Meteorus pulchricornis, a gypsy moth parasitoid. Annals of the Entomological Society of America, 71: 364366.CrossRefGoogle Scholar
Biddinger, D.J., Felland, C.M., Hull, L.A. 1994. Parasitism of tufted apple budmoth (Lepidoptera:Tortricidae) in conventional insecticide and pheromone-treated Pennsylvania apple orchards. Environmental Entomology, 23: 15681579.CrossRefGoogle Scholar
Cardona, C.Oatman, E.R. 1975. Biology and physical ecology of Apanteles subandinus Blanchard (Hymenoptera: Braconidae), with notes on temperature responses of Apanteles scutellaris Muesebeck and its host, the potato tuberworm. Hilgardia, 43: 51.CrossRefGoogle Scholar
Casas, J. 1989. Foraging behaviour of a leafminer parasitoid in the field. Ecological Entomology, 14: 257265.CrossRefGoogle Scholar
Connor, E.F. 2006. Effect of the light environment on oviposition preference and survival of a leaf-mining moth, Cameraria hamadryadella (Lepidoptera:Gracillariidae), on Quercus alba L. Ecological Entomology, 31: 179184.CrossRefGoogle Scholar
Cossentine, J.E., Deglow, E.K., Jensen, L.B.M., Goulet, H. 2005. Biological assessment of Macrocentrus linearis and Apanteles polychrosidis (Hymenoptera: Braconidae) as parasitoids of the obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). BioControl Science and Technology, 15: 711720.CrossRefGoogle Scholar
Cossentine, J., Jensen, L., Deglow, E., Bennett, A., Goulet, H., Huber, J., et al. 2004. The parasitoid complex affecting Choristoneura rosaceana and Pandemis limitata populations in organically managed apple orchards. BioControl, 49: 359372.CrossRefGoogle Scholar
Crawley, M.J. 2007. The R book. John Wiley & Sons Ltd., West Sussex, United Kingdom.CrossRefGoogle Scholar
Doǧanlar, M.Beirne, B.F. 1980. Parasites of Phyllonorycter elmaella (Lepidoptera: Gracilariidae) on apple in the Vancouver district, British Columbia. The Canadian Entomologist, 112: 314.CrossRefGoogle Scholar
Elliott, N.C., Simmons, G.A., Haynes, D.L. 1986. Mortality of Jack Pine budworm (Lepidoptera: Tortricidae) parasites and density dependence of hyperparasitism. Environmental Entomology, 15: 662668.CrossRefGoogle Scholar
Evenden, M.L. 2009. Biology of Caloptilia fraxinella (Lepidoptera: Gracillariidae) on ornamental green ash, Fraxinus pennsylvanica (Oleaceae). The Canadian Entomologist, 141: 3139.CrossRefGoogle Scholar
Evenden, M.L., Armitage, G., Lau, R. 2007. Effects of nutrition and methoprene treatment on reproductive diapause in Caloptilia fraxinella (Lepidoptera: Gracillariidae). Physiological Entomology, 32: 275282.CrossRefGoogle Scholar
Farrar, J.L. 1998. Trees in Canada [CD-ROM]. Canadian Forest Service, Ottawa, Canada.Google Scholar
Fink, U.Völkl, W. 1995. The effect of abiotic factors on foraging and oviposition success of the aphid parasitoid, Aphidius rosae. Oecologia, 103: 371378.CrossRefGoogle ScholarPubMed
Forbes, W.T.M. 1923. The Lepidoptera of New York and neighboring states. Part I. Primitive forms, Microlepidoptera, Pyraloids, Bombyces. Memoirs of the Cornell University Agricultural Experiment Station, 68: 1729.Google Scholar
Girardoz, S., Kenis, M., Quicke, D.L.J. 2006. Recruitment of native parasitoids by an exotic leaf miner, Cameraria ohridella: host–parasitoid synchronization and influence of the environment. Agricultural and Forest Entomology, 8: 4956.CrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Hagley, E.A.C. 1985. Parasites recovered from the overwintering generation of the spotted tentiform leafminer, Phyllonorycter blancardella, (Lepidoptera: Gracillaridae) in pest management apple orchards in southern Ontario. The Canadian Entomologist, 117: 371374.CrossRefGoogle Scholar
Huber, J.T., Eveleigh, S., Pollock, P., McCarthy, P. 1996. The chalcidoid parasitoids and hyperparasitoids (Hymenoptera: Chalcidoidea) of Choristoneura species (Lepidoptera: Tortricidae) in America North of Mexico. The Canadian Entomologist, 126: 11671220.CrossRefGoogle Scholar
Idris, A.B.Grafius, E. 1998. Diurnal flight activity of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of the diamondback moth (Lepidoptera: Plutellidae), in the field. Environmental Entomology, 27: 406414.CrossRefGoogle Scholar
LaGasa, E.H., Murray, T.A., Hitchcox, M., Pauley-Crawley, A. 2000. 1999 Western Washington Exotic Defoliator Parasitoid Survey. 1999 Entomology Project Report/WSDA PUB 034 (N/1/00), Laboratory Services Division, Pest Program. Washington State Department of Agriculture, Olympia, Washington, United States of America.Google Scholar
Li, S.Y., Fitzpatrick, S.M., Troubridge, J.T., Sharkey, M.J., Barron, J.R., O'Hara, J.E. 1999. Parasitoids reared from the obliquebanded leafroller (Lepidoptera: Tortricidae) infesting raspberries. The Canadian Entomologist, 131: 399404.CrossRefGoogle Scholar
Matthews, R.W. 1974. Biology of Braconidae. Annual Review of Entomology, 19: 1532.CrossRefGoogle Scholar
Pohl, G.R., Saunders, C., Barr, W.B., Wartenbe, M.D., Fownes, S.L. 2004. Caloptilia fraxinella (Lepidoptera: Gracillariidae), a new pest of ash (Oleaceae: Fraxinus spp.) on the Canadian prairies. The Canadian Entomologist, 136: 733736.CrossRefGoogle Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. ISBN 3-900051-07-0. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.rproject.org.Google Scholar
Ridley, M. 1989. The timing and frequency of mating in insects. Animal Behaviour, 37: 535545.CrossRefGoogle Scholar
Salazar, P.B.Rivera, N.E. 1995. Study on the biology of Apanteles plutellae Kurdj and testing on its effectivity under laboratory conditions. Philippine Journal of Plant Industry, 60: 6175.Google Scholar
Salt, G. 1961. Competition among insect parasitoids. Mechanisms in biological competition. Symposium of the Society for Experimental Biology, 15: 96119.Google Scholar
Schuh, J.Mote, D.C. 1948. The oblique-banded leafroller on red raspberries. Oregon State College Technical Bulletin, 13: 143.Google Scholar
Seaman, A.J., Nyrop, J.P., Dennehy, T.J. 1990. Egg and larval parasitism of the grape berry moth (Lepidoptera: Tortricidae) in three grape habitats in New York. Environmental Entomology, 19: 764770.CrossRefGoogle Scholar
Shaw, M.R.Huddleston, T. 1991. Classification and biology of braconid wasps (Hymenoptera: Braconidae). Handbooks of the Identification of British Insects, Volume 7, part 11. Royal Entomological Society of London, London, United Kingdom.Google Scholar
Shorey, H.H.Hale, R.L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58: 522524.CrossRefGoogle Scholar
Smith, L.Rutz, A. 1991. The influence of light and moisture gradients on the attack rate of parasitoids foraging for hosts in a laboratory arena (Hymenoptera: Pteromalidae). Journal of Insect Behavior, 4: 195208.CrossRefGoogle Scholar
Strand, M.R. 2000. Developmental traits and life-history evolution in parasitoids. In Parasitoid population biology . Edited by M.E. Hochberg and A.R. Ives. Princeton University Press, Princeton, New Jersey, United States of America. Pp. 139162.CrossRefGoogle Scholar
Sugiura, S. 2011. Structure and dynamics of the parasitoid community shared by two herbivore species on different host plants. Arthropod–Plant Interactions, 5: 2938.CrossRefGoogle Scholar
Tagawa, J.Kitano, H. 1981. Mating behaviour of the braconid wasp Apanteles glomeratus L. (Hymenoptera: Braconidae) in the field. Applied Entomology and Zoology, 16: 345350.CrossRefGoogle Scholar
Van Nouhuys, S.Lei, G. 2004. Parasitoid–host metapopulation dynamics: the causes and consequences of phenological asynchrony. Journal of Animal Ecology, 73: 526535.CrossRefGoogle Scholar
Weseloh, R. 1977. Mating behavior of the gypsy moth parasite, Apanteles melanoscelus. Annals of the Entomological of America, 70: 549554.CrossRefGoogle Scholar
Yu, R., Shi, M., Huang, F., Chen, X. 2008. Immature development of Cotesia vestalis (Hymenoptera: Braconidae), an endoparasitoid of Plutella xylostella (Lepidoptera: Plutellidae). Annals of the Entomological Society of America, 101: 189196.CrossRefGoogle Scholar