Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T20:52:28.321Z Has data issue: false hasContentIssue false

PHYSIOLOGICAL CLASSIFICATION OF DORMANCIES IN INSECTS

Published online by Cambridge University Press:  31 May 2012

Ajai Mansingh
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario

Abstract

A new classification of dormancy in insects is proposed on the basis of the evolutionary nature of dormancy, its synchronization with the aetiology of the species for their phenological advantage, the nature of ecological adversity, and the consequent physiological and biochemical adjustments. The roles of the above factors in the induction and termination of dormancies are discussed. The inadequacies of all the previous systems of describing various conditions of dormancy are pointed out.All instances of dormancy are divided into three major groups: hibernation, aestivation, and athermopause. Each of these classes is further subdivided into three categories representing a sequence of evolutionary adaptations: quiescence, oligopause, and diapause, in that order of evolutionary development. Depending upon the physiological condition of diapausing individuals or populations, two diapause states are recognized: teleodiapause and ateleodiapause. Each term is defined and discussed with examples.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkisson, P. L., Bell, R. A., and Wellso, S. A.. 1963. Environmental factors controlling the induction of diapause in the pink bollworm Pectinophora gossypiella (Saunders). J. Insect Physiol. 9: 299310.CrossRefGoogle Scholar
Andrewartha, H. C. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27: 5092.CrossRefGoogle Scholar
Asahina, E. 1959. Prefreezing as a method enabling animals to survive freezing at an extremely low temperature. Nature 186: 10031004.CrossRefGoogle Scholar
Asahina, E. 1969. Frost resistance in insects. In Advances in insect physiology (Beament, J. W. L., Treherne, J. E., and Wigglesworth, V. B., Eds.), Vol. 6, pp. 150. Academic Press, New York and London.Google Scholar
Barlow, J. S. 1964. Fatty acids in some insect and spider fats. Can. J. Biochem. 42: 13651374.CrossRefGoogle ScholarPubMed
Barnes, H. F. 1952. Studies of fluctuations of insect populations. XII: Further evidence of prolonged larval life in the wheat blossom midges. Ann. appl. Biol. 39: 370374.CrossRefGoogle Scholar
Beck, S. D. 1967. Water intake and the termination of diapause in the European corn borer Ostrinia nubilalis. J. Insect Physiol. 13: 739750.CrossRefGoogle ScholarPubMed
Beck, S. D. 1968. Insect photoperiodism, 288 pp. Academic Press, New York.Google Scholar
Beck, S. D. and Alexander, N.. 1964. Chemically and photoperiodically induced diapause development in the European corn borer Ostrinia nubilalis. Biol. Bull. Mar. biol. Lab., Woods Hole 126: 175184.Google Scholar
Beck, S. D., Clouter, E. J., and McLeod, D. G. R.. 1962. Photoperiod and insect development. Proc. 23rd biol. colloq. Ore. St. Univ., pp. 4664.Google Scholar
Bowers, B. and Williams, C. M.. 1964. Physiology of insect diapause. XIII: DNA synthesis during the metamorphosis of the cecropia silkworm. Biol. Bull. Mar. biol. Lab., Woods Hole 127: 205219.CrossRefGoogle Scholar
Burges, H. D. 1959. Dormancy of the Khapra beetle: quiescence or diapause. Nature, Lond. 186, 17611762.Google Scholar
Burges, H. D. 1960. Studies on the dermestid beetle Trogoderma granarium Everts. IV: Feeding, growth and respiration with particular reference to diapause larvae. J. Insect Physiol. 5: 317334.Google Scholar
Chino, H. 1957. Conversion of glycogen to sorbitol and glycerol in the diapause eggs of the Bombyx silkworm. Nature, Lond. 180: 606607.Google Scholar
Chino, H. 1960. Enzymatic pathways in the formation of sorbitol and glycerol in the diapausing eggs of the silkworm Bombyx mori. I: On the polyal dehydrogenases. J. Insect Physiol. 5: 115.CrossRefGoogle Scholar
Church, N. S. 1953. Initiation of post-diapause development of reinstatement of diapause in Cephus cinctus Nort. M.Sc. Thesis, Montana State College.Google Scholar
Church, N. S. 1955. Hormones and termination and reinduction of diapause in Cephus cinctus Nort. (Hymenoptera, Cephidae). Can. J. Zool. 33: 339369.CrossRefGoogle Scholar
Church, N. S. and Salt, R. W.. 1952. Some effects of temperature on development and diapause in eggs of Melanoplus bivitatus (Say) (Orthaptera, Acrididae). Can. J. Zool. 30: 173179.Google Scholar
Clements, A. N. 1963. The physiology of mosquito. Pergamon Press, London and New York.Google Scholar
Cousin, G. 1932. Étude expérimentale de la diapause des insects. Bull. Biol. Suppl. 15, 341 pp.Google Scholar
Cunningham, R. C. and Tombes, A. S.. 1966. Succinate oxidase system in the alfalfa weevil Hypera postica during aestivation (summer diapause). J. Insect Physiol. 18: 725733.Google ScholarPubMed
Danileviskii, A. S. 1965. Photoperiodism and seasonal development of insects. Oliver and Boyd, London.Google Scholar
Danileviskii, A. S., Coryshin, N. I., and Tyshchenko, V. P.. 1970. Biological rhythms in terrestrial arthropods. A. Rev. Ent. 15: 201244.CrossRefGoogle Scholar
Danileviskii, A. S. 1949. The dependence of geographical distribution of insects on the ecological peculiarities of their life cycles (in Russian). Ent. Obozr. 30: 194201.Google Scholar
DeKort, C. A. D. 1969. Hormones and the structural and biochemical properties of the flight muscles in the Colorado beetles. Meded. Landbouwhogeschool, Wageningen, 69–2; H. Veenman and Zonen N.V. — Wageningen.Google Scholar
DeWilde, J. 1962. Photoperiodism in insects and mites. A. Rev. Ent. 7: 126.Google Scholar
Dubach, P., Pratt, D., Smith, F., and Stewart, C. M.. 1959. Possible role of glycerol in winter hardiness of insects. Nature, Lond. 184: 288289.CrossRefGoogle Scholar
Duclaux, M. E. 1869. De l'influence du froid de l'hiver sur le développement de l'embryon du ver à soie, et sur l'éclosion de la graine. C. r. hebd. Séanc. Acad. Sci., Paris 69: 1021.Google Scholar
Dutt, N. 1963. Water uptake in the diapause mechanism of jute stem girdler, Nupserha bicolor postbrunnea Dutt. Sci. and Culture 29: 302.Google Scholar
Dyer, E. D. A. 1969. Influence of temperature inversion on development of spruce beetle, Dendroctonus obesus (Mannerheim) (Coleoptera: Scolytidae). J. ent. Soc. Br. Columb. 66: 4145.Google Scholar
Fraenkel, G. and Hsiao, C.. 1968 a. Manifestation of a pupal diapause in two species of flies Sarcophaga argyrostoma and S. bullata. J. Insect Physiol. 14: 689705.Google Scholar
Fraenkel, G. and Hsiao, C.. 1968 b. Morphological and endocrinological aspects of pupal diapause in a fleshfly, Sarcophaga argyrostoma. J. Insect Physiol. 14: 707718.Google Scholar
Gayspitz, K. F. 1953. Reactions of monovoltine butterflies to prolongation of day length (in Russian). Ent. Obozr. 33: 1724.Google Scholar
Harvey, G. T. 1957. The occurrence and nature of diapause-free development in spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. J. Zool. 35: 549572.CrossRefGoogle Scholar
Harvey, G. T. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. Can. Ent. 99: 486503.Google Scholar
Harvey, W. R. 1962. Metabolic aspects of insect diapause. A. Rev. Ent. 7: 5780.Google Scholar
Harwood, R. F. and Takata, N.. 1965. Effect of photoperiod and temperature on fatty acid composition of the mosquito Culex tarsalis. J. Insect Physiol. 11: 711716.Google Scholar
Hasegawa, K. 1963. Studies on the mode of action of diapause hormone in the silkworm Bombyx mori L. I: The action of diapause hormone injected into pupae of different ages. J. exp. Biol. 60: 517529.CrossRefGoogle Scholar
Henneguy, L. F. 1904. Les Insectes. Morphologie, reproduction, embryogéie. Paris.Google Scholar
Hogan, T. W. 1962. The effect of Ammonia on the rate of termination of, diapause in eggs of Acheta commodus (Walk) (Orthoptera: Gryllidae). Aust. J. biol. Sci. 15: 538542.Google Scholar
Hogan, T. W. 1964. Further data on the effect of Ammonia on the termination of diapause in eggs of Teleogryllus commodus (Walk) (Orthoptera: Gryllidae). Aust. J. biol. Sci. 17: 752757.CrossRefGoogle Scholar
House, H. L. 1967. The decreasing occurrence of diapause in the fly Pseudosarcophaga affinis through laboratory-reared generations. Can. J. Zool. 45: 149153.Google Scholar
Kogure, M. 1933. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. J. Dep. Agric. Kyushu Univ. 4: 15.Google Scholar
Krishnakumaran, A., Berry, S. J., Oberlander, H., and Schneiderman, H. A.. 1967. Nucleic acid synthesis in the cecropia silkworm and other saturniid moths. J. lnsect Physiol. 13: 157.CrossRefGoogle Scholar
Lamberemont, E. N. and Blum, M. S.. 1963. Fatty acids of the boll weevil. Ann. ent. Soc. Am. 56: 612616.Google Scholar
Lamberemont, E. N., Blum, M. S., and Schrader, R. M.. 1964. Storage and fatty acid composition of triglycerides during adult diapause of the boll weevil. Ann. ent. Soc. Am. 57: 526532.CrossRefGoogle Scholar
LeBerre, J. R. 1953. Contribution à l'étude biologique du criqust migrateur des Landes (Locusta migratoria gallica Remaudière). Biol. Bull. Mar. biol. Lab., Woods Hole 87: 227.Google Scholar
Lees, A. D. 1955. The physiology of diapause in arthropods. Cambridge University Press.Google Scholar
Lees, A. D. 1956. The physiology and biochemistry of diapause. A. Rev. Ent. 1: 116.Google Scholar
Lees, A. D. 1968. Photoperiodism in insects. In Photophysiology, Vol. IV (Ed. Giese, A. C.), pp. 67138. Academic Press, New York.Google Scholar
Lutz, P. E. and Jenner, C. E.. 1964. Life history and photoperiodic response of nymphs of Tetragoneura cynosura (Say). Biol. Bull. Mar. biol. Lab., Woods Hole 127: 304316.Google Scholar
Mani, M. S. 1962. Introduction to high altitude entomology, pp. 279283. Methuen, London.Google Scholar
MacLeod, E. G. 1967. Experimental induction and elimination of adult diapause and autumnal coloration in Chrysopa carnea (Neuroptera). J. Insect Physiol. 13: 13431349.CrossRefGoogle Scholar
Mansingh, A. 1967. Changes in the free amino acids of the haemolymph of Antheraea pernyi during induction and termination of diapause. J. lnsect Physiol. 13: 16451655.CrossRefGoogle Scholar
Mansingh, A. and Smallman, B. N.. 1966. Photoperiod control of an “obligatory” pupal diapause. Can. Ent. 98: 613616.Google Scholar
Mansingh, A. and Smallman, B. N.. 1967. Effect on photoperiod on the incidence and physiology of diapause in two saturniids. J. Insect Physiol. 13: 11471162.Google Scholar
Mansingh, A. and Smallman, B. N.. 1968. Precocious termination of “obligatory” diapause in field-collected pupae of Antheraea polyphemus. Can. Ent. 100: 134139.Google Scholar
Mellanby, K. 1938. Diapause and metamorphosis of the blow fly, Lucilia sericata Meig. Parasitology 30: 392395.CrossRefGoogle Scholar
Miller, W. J. 1969. Pupae of white-pine weevil survive freeze-drying. Dep. Fish. For. (Ottawa, Can.), Res. Note 25(3): 1.Google Scholar
Morris, R. F. 1967. Factors inducing diapause in Hyphantria cunea. Can. Ent. 99: 522529.CrossRefGoogle Scholar
Müller, H. J. 1965. Problems der Insekten diapause verh. Dt. Zool. Ges. in Jena, 1965. Zool. Anz. 29 Suppl.: 192222.Google Scholar
Norris, M. J. 1965. The influence of constant and changing photoperiods on imaginal diapause in red locust (Nomadacris septum fasciatus Serv). J. lnsect Physiol. 11: 11051119.Google Scholar
Pantyukov, G. A. 1964. The effect of low temperature on different populations of the brown tail moth Euproctis chrysorrhoea (L.) and the gypsy moth Lymantria dispar (L.) (Lepidoptera, Orgyidae). Ent. Rev. Wash. 43: 4755.Google Scholar
Pradhan, S. and Bhatia, S. K.. 1956. The effect of temperature and humidity on the development of sugar cane stem borer Chilo infuscatellus snell. Proc. 43rd Indian Sci. Congr. III, p. 399.Google Scholar
Prebble, M. L. 1941. The diapause and related phenomena in Gilpinia polytoma (Harty). V: Diapause in relation to epidemiology. Can. J. Res. (D) 19: 437454.CrossRefGoogle Scholar
Raubaud, E. 1930. Suspension évolutive et hibernation larvaire obligatoire provoquées par la chalent chez le moustique commun Culex pipiens L. C. r. Acad. Sci. Paris 190: 326327.Google Scholar
Ring, R. L. 1967. Maternal induction of diapause in the larva of Lucilia caesar L. (Diptera: Calliphoridae). J. exp. Biol. 46: 123136.Google Scholar
Salt, R. W. 1958. Relationship of respiration rate to temperature in a supercooled insect. Can. J. Zool. 36: 265268.CrossRefGoogle Scholar
Salt, R. W. 1959. Role of glycerol in the cold-hardening of Bracon cephi (Gahan). Can. J. Zool. 37: 5969.Google Scholar
Salt, R. W. 1961. Principles of insect cold-hardiness. A. Rev. Ent. 6: 5576.Google Scholar
Saunders, D. S. 1966. Larval diapause of maternal origin. II: The effect of photoperiod and temperature on Nasonia vitripennis. J. Insect Physiol. 12: 569581.CrossRefGoogle Scholar
Schneider, F. 1950. Die Entwicklung des syrphiden-parasiten Diplazon fissoruis Grav. (Hym. Ichneum.) in uni-, oligo- und polyvoltinen wirten und sein verhalten bei parasitärer Aktivierung der Diapause-larven durch Diplazon pectoratorius Grav. Mitt. schweiz. ent. Ges. 23: 155159.Google Scholar
Schneider, F. 1951. Einige physiologische Beziehungen zwishen syrphidenlarven und ihren parasiten. Z. angew. Ent. 33: 150162.CrossRefGoogle Scholar
Schneiderman, H. A. and Williams, C. M.. 1953. The physiology of insect diapause VII. The respiratory metabolism of cecropia silkworm during diapause and development. Biol. Bull. Mar. biol. Lab., Woods Hole 105: 320334.CrossRefGoogle Scholar
Schneiderman, H. A. and Williams, C. M.. 1954. The physiology of insect diapause. IX: The cytochrome-oxidase system in relation to the diapause and development of cecropia silkworm. Biol. Bull. Mar. biol. Lab., Woods Hole 106: 239251.Google Scholar
Schoonhoven, L. M. 1962. Diapause and the physiology of host-parasite synchronization in Bupalus piniaruis L. (Geometridae) and Eucarcelia rutilla Vill. (Tachanidae). Arch. Neer. Zool., Ser. IV (B): 111174.Google Scholar
Schoonhoven, L. M. 1963. Spontaneous electrical activity in the brains of diapausing insects. Science 141: 173174.Google Scholar
Shappirio, D. C. and Williams, C. M.. 1957. The cytochrome system of the cecropia silkworm. II: Spectrophotometric studies of oxidative enzyme in the wing epithelium. Proc. R. Soc. Lond. (B) 147: 233246.Google Scholar
Shelford, V. E. 1929. Laboratory and field ecology. Williams and Wilkins, Baltimore.Google Scholar
Sicker, W. 1964. Die Abhangigkeit der diapause von der Photoperiodizitat bei Tetrix undulata (Sow) (Saltatoria: Tetrigonidae) (mit Beitragen zur Biologie und Morphologie dieser Art.). Z. Morph. Ökol. Tiere 54: 107140.CrossRefGoogle Scholar
Silver, G. T. 1958. Studies on the silver-spotted tiger moth, Halisidota argentata Pack. (Lepidoptera: Arctiidae), in British Columbia. Can. Ent. XC: 6580.Google Scholar
Sømme, L. 1965. Further observations on glycerol and cold-hardiness in insects. Can. J. Zool. 43: 765770.CrossRefGoogle Scholar
Sømme, L. 1967. The effect of temperature and annoxia on haemolymph composition and supercooling in three overwintering insects. J. Insect Physiol. 13: 805814.Google Scholar
Stegwee, D. 1964. Respiratory chain metabolism in the Colorado potato beetle. II: Respiration and oxidative phosphorylation in “sarcosomes” from diapausing beetles. J. Insect Physiol. 10: 97102.Google Scholar
Steinberg, D. M. and Kamensky, S. A.. 1936. Les premisses oecologiques de la diapause de Loxostege Sticticalis (Lepidoptera, Pyralidae). Bull. biol. 70, 165169.Google Scholar
Strümpel, H. 1964. Physiologische und bistologische untersuchungen zur Diapause bei Ephestia elutella Hubner (Lep. Phycitidae). Mitt. Hamburg Zool. Mus. Inst., Kosswig-Festschrift, 199245.Google Scholar
Tanaka, Y. 1951. Studies on hibernation with special reference to photoperiodicity and breeding of the Chinese Tussarsilkworm, V. J. Seric. Sci., Japan 20: 191201.Google Scholar
Tano, K. 1964. High sugar levels in the solitary bee Ceratina (in Japanese, summary in English). Low Temp. Sci. (B) 22: 5157.Google Scholar
Telfer, W. H. and Williams, C. M.. 1960. The effect of diapause, development, and injury on the incorporation of radioactive glycine into the blood proteins of the Cecropia silkworm. J. Insect Physiol. 5: 6172.Google Scholar
Tombes, A. S. 1964. Respiratory and compositional study on the aestivating insect Hypera postica (Gyll.) (Curculionidae). J. Insect Physiol. 10: 9971003.CrossRefGoogle Scholar
Tombes, A. S. 1966. Aestivation (summer diapause) in Hypera postica (Coleoptera: Curculionidae). I: Effect of aestivation, photoperiods, and diet on total fatty acids. Ann. ent. Soc. Am. 59: 376380.Google Scholar
Tsuji, H. 1963. Experimental studies on the larval diapause of the Indian meal moth, Plodia interpunctella Hubner (Lepidoptera, Pyralidae). Thesis submitted to Kyushu University, Fukuska Kokodo Ltd., Japan. pp. 176.Google Scholar
Ushatinskaya, R. S. 1957. Principles of cold resistance in insects (in Russian). Acad. Sci. U.S.S.R. Press, Moscow. 314 pp.Google Scholar
Van der Kloot, W. C. 1960. Neurosecretion in insects. Ann. Ent. 5: 3552.Google Scholar
Watson, N. H. F. The nature of arrested development in cyclopid copepods. Ph.D. Thesis, Queen's University, Kingston, Ont., Canada. Unpub.Google Scholar
Watson, N. H. F. and Smallman, B. N.. The role of photoperiod and temperature in the induction and termination of arrested development in two species of freshwater cyclopid copepods. Can. J. Zool. (In press).Google Scholar
Wheeler, M. W. 1893. A contribution to insect embryology. J. Morph. 8: 1.CrossRefGoogle Scholar
Wigglesworth, V. B. 1953. The origin of sensory neurons in an insect, Rhodnius prolixus. Q. Jl microsc. Sci. 94: 93112.Google Scholar
Wigglesworth, V. B. 1961. The principles of insect physiology. Methuen, London, pp. 8194.Google Scholar
Wigglesworth, V. B. 1964. The hormonal regulation of growth and reproduction in insects. In Advances in insect physiology, 2. (Eds. Beament, J. W. L., Treherne, J. E. and Wigglesworth, V. B.), pp. 248335. Academic Press, New York.Google Scholar
Williams, C. M. 1952. Physiology of insect diapause. IV: The brain and prothoracic glands as an endocrine system in the cecropia silk worm. Biol. Bull. Mar. biol. Lab., Woods Hole 103: 120138.Google Scholar
Williams, C. M. 1956. Physiology of insect diapause. X: An endocrine mechanism for the influence of temperature on the diapausing pupa of the cecropia silk worm. Biol. Bull. Mar. biol. Lab., Woods Hole 110: 210218.CrossRefGoogle Scholar
Williams, C. M. and Adkisson, P. L.. 1964. Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm Antheraea pernyi. Biol. Bull. Mar. biol. Lab., Woods Hole 127: 511525.Google Scholar
Wyatt, C. R. 1961. The biochemistry of insect haemolymph. A. Rev. Ent. 6: 75102.Google Scholar
Zwicky, K. and Wigglesworth, V. B.. 1956. The course of oxygen consumption during the moulting cycle of Rhodnius prolixus (Stal) (Hemiptera). Proc. R. ent. Soc. Lond. (A) 31: 153160.Google Scholar