Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T23:57:01.492Z Has data issue: false hasContentIssue false

THE POPULATION DYNAMICS OF IPS GRANDICOLLIS (EICHHOFF) (COLEOPTERA: SCOLYTIDAE) IN JAMAICA

Published online by Cambridge University Press:  31 May 2012

Eric Garraway
Affiliation:
Department of Zoology, University of the West Indies, Kingston 7, Jamaica
B.E. Freeman
Affiliation:
Department of Zoology, University of the West Indies, Kingston 7, Jamaica

Abstract

Ips grandicollis (Eichhoff) was first recorded from Jamaica in 1978 and has become a potential pest in Pinus plantations in the island. Its distribution there is determined by the occurrence of suitable food, but not by altitude or rainfall. Developmental mortality due to predators, parasites, and resin did not limit population numbers within logs: control resulted ultimately from competition among egg-laying females and among larvae for space in suitable logs. However, when the entire Jamaican population was considered, dispersive loss of adults played a major part in the limitation of numbers. A cyclic budget revealed that a minimum of 44% of the population was lost during dispersal. Dispersive loss in the males (77.3%) was higher than that in the females (35.4%), and this difference may be related to the primary role of the males in finding suitable logs.

Résumé

On a observé Ips grandicollis (Eichhoff) en Jamaique pour la première fois en 1978, et il a atteint depuis le statut de ravageur potentiel des plantations de Pinus de l’île. Sa distribution y est déterminée par la présence de nourriture convenable, et non pas par l’altitude ou la pluviosité. La mortalité au cours du développement en rapport avec la prédation, le parasitisme et l’enrobage par la résine ne limite pas les populations dans les billes : leur régulation survient ultimement par compétition entre les femelles gravides ou entre les larves, dans les billes propres à la ponte. Pour l’ensemble de la population de l’île, les pertes par dispersion des adultes joue en rôle régulateur majeur. Un budget cyclique a révélé qu’au minimum 44% de la population a disparu par dispersion. La perte par dispersion des mâles (77,3%) a excédé celle des femelles (35,4%), cette différence étant possiblement reliée au rôle prépondérant des mâles dans la recherche de billes convenables à la reproduction.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashraf, M., and Berryman, A.A.. 1970. Biology of Sulphurethylenchus elongatus (Nematoda: Sphaerulariidae), and its effects on its host, Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 102: 197213.CrossRefGoogle Scholar
Beaver, R.A. 1966. The development and expression of population tables for the bark beetle Scolytus scolytus (F). J. Anim. Ecol. 35: 2741.Google Scholar
Beaver, R.A. 1977. Non-equilibrium ‘island’ communities: Diptera breeding in dead snails. J. Anim. Ecol. 46: 783798.CrossRefGoogle Scholar
Berryman, A.A. 1968. Estimation of oviposition by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 61: 227228.CrossRefGoogle Scholar
Berryman, A.A. 1973. Population dynamics of the fir engraver Scolytus ventralis (Coleoptera: Scolytidae). I. Analysis of population behaviour and survival from 1964 to 1971. Can. Ent. 105: 14651488.CrossRefGoogle Scholar
Bright, D.E. 1972. The Scolytidae and Platypodidae of Jamaica (Coleoptera). Bull. Inst. Jamaica. Sci. Ser. No. 21.Google Scholar
Freeman, B.E. 1973. Preliminary studies on the population dynamics of Sceliphran assimile (Sphecidae) in Jamaica. J. Anim.Ecol. 42: 231248.CrossRefGoogle Scholar
Freeman, B.E. 1976. A spatial approach to insect population dynamics. Nature 260: 240241.CrossRefGoogle ScholarPubMed
Freeman, B.E. 1977. Aspects of the regulation of size of the Jamaican population of Sceliphron assimile Dahlbom (Hymenoptera: Sphecidae). J. Anim. Ecol. 46: 231247.CrossRefGoogle Scholar
Freeman, B.E. 1981. Parental investment, maternal size and population dynamics of a solitary wasp. Am. Nat. 117: 357362.CrossRefGoogle Scholar
Freeman, B.E. 1982. The comparative distribution and population dynamics in Trinidad of two Sceliphron species (Hymenoptera: Sphecidae): Biol. J. Linn. Soc. 17: 343360.CrossRefGoogle Scholar
Freeman, B.E., and Geoghagen, D.A.. 1989. A population study in Jamaica on the gall-midge Asphondylia boerhaaviae Mohn: a contribution to spatial dynamics. J. Anim. Ecol. 58: 367382.CrossRefGoogle Scholar
Garraway, E. 1983. The population dynamics of bark beetles in Jamaican forest plantations. Ph.D. thesis, University of the West Indies, Kingston, Jamaica. 275 pp.Google Scholar
Garraway, E. 1986. The biology of Ips calligraphus and Ips grandicollis (Coleoptera: Scolytidae) in Jamaica. Can. Ent. 118: 113121.Google Scholar
Garraway, E., and Freeman, B.E.. 1981. Population dynamics of the juniper bark beetle Phloeosinus neotropicus in Jamaica. Oikos 37: 363368.Google Scholar
Hamilton, W.D. 1967. Extraordinary sex ratios. Science N.Y. 156: 477488.Google Scholar
Hassell, M.P., and Southwood, T.R.E.. 1978. Foraging strategies in insects. A. Rev. Ecol. Syst. 9: 7598.CrossRefGoogle Scholar
Johanneson, N.E. 1983. The morphology and biology of Hypothenemus hampei (Ferrari) in Jamaica. M. Phil. thesis, University of the West Indies, Kingston, Jamaica. 275 pp.Google Scholar
Massey, C.L. 1956. Nematode parasites and associates of the engelmann spruce beetle (Dendroctonus engelmanni Hopk.). Proc. Helminth. Soc. Wash. 23: 1424.Google Scholar
Massey, C.L. 1960. Nematode parasites and associates of the California five-spined engraver Ips confusus (LeC.). Proc. Helminth. Soc. Wash. 27: 1422.Google Scholar
Massey, C.L. 1964. Nematode parasites and associates of the fir engraver beetle Scolytus ventralis LeConte, in New Mexico. J. Insect Path. 6: 133155.Google Scholar
Miller, D.R., and Borden, J.H.. 1985. Life history and biology of Ips latidens (LeConte) (Coleoptera). Can. Ent. 117: 859871.CrossRefGoogle Scholar
Milne, A. 1957. The natural control of insect populations. Can. Ent. 89: 193213.Google Scholar
Milne, A. 1962. On a theory of natural control of insect populations. J. Theor. Biol. 3: 1950.CrossRefGoogle Scholar
Nicholson, A.J. 1933. The balance of animal populations. J. Anim. Ecol. 2: 132178.CrossRefGoogle Scholar
Nicholson, A.J. 1957. Self-adjustment of population changes. Cold Spring Harb. Symp. Quant. Biol. 2: 153173.CrossRefGoogle Scholar
Reid, R.W. 1958. The behaviour of the mountain pine beetle Dendroctonus monticolae Hopk. during mating and egg laying and gallery construction. Can. Ent. 90: 505509.CrossRefGoogle Scholar
Safranyik, L., and Linton, D.A.. 1985. The relationship between density of emerged Dendroctonus ponderosae (Coleoptera: Scolytidae) and density of exit holes in lodgepole pine. Can. Ent. 117: 267275.CrossRefGoogle Scholar
Sartwell, C. 1971. Ips pini (Coleoptera: Scolytidae) emergence per exit hole in Ponderosa pine thinning slash. Ann. ent. Soc. Am. 64: 14731474.Google Scholar
Southwood, T.R.E. 1962 a. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37: 171214.Google Scholar
Southwood, T.R.E. 1962 b. Migration— an evolutionary necessity for denizens of temporary habitats. 11 Int. Congr. Ent. 3: 5558.Google Scholar
Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46: 337365.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods with Special Reference to the Study of Insect Populations, 2nd ed. Chapman and Hall, London.Google Scholar
Taffe, C.A. 1979. The ecology of two West Indian species of mud-wasp (Eumenidae Hymenoptera). Biol. J. Linn. Soc. 11: 17.Google Scholar
Taylor, L.R. 1980. The Rothamsted insect survey – an approach to the theory and practice of synoptic pest forecasting in agriculture. Movement of highly mobile insects: Concepts and methodology in research. Section IV. Modelling and monitoring. Chapter 10, pp. 148185.Google Scholar
Taylor, L.R., and Taylor, R.A.J.. 1977. Aggregation, migration and population mechanics. Nature 265: 415421.CrossRefGoogle ScholarPubMed
Taylor, R.A.J., and Taylor, L.R. 1979. A behavioural model for the evolution of spatial dynamics. 20th Symp. Brit. Ecol. Soc. 1978: 127.Google Scholar
Vité, J.P., and Renwick, J.A.A.. 1971. Population aggregation pheromone in the bark beetle Ips grandicollis. J. Insect Physiol. 17: 16991704.CrossRefGoogle Scholar
*Williams, C.B. 1952. How far do insects travel? Rep. Rothamsted Exp. Sta. 1951: 249263.Google Scholar
Witanachchi, J.P., and Morgan, F.D.. 1981. Behaviour of the bark beetle Ips grandicollis during host selection. Physiol. Behav. 6: 218223.Google Scholar
Wood, S.C. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Mem. 6.Google Scholar
Wright, L.C., Berryman, A.A., and Wickman, B.E.. 1984. Abundance of the fir engraver, Scolytus ventralis and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by Douglas fir tussock moth, Orgyia pseudotsugata. Can. Ent. 116: 293305.CrossRefGoogle Scholar