Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:57:32.595Z Has data issue: false hasContentIssue false

Potential for range expansion of mountain pine beetle into the boreal forest of North America

Published online by Cambridge University Press:  02 April 2012

L. Safranyik*
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
A.L. Carroll
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
J. Régnière
Affiliation:
Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec, Canada G1V 4C7
D.W. Langor
Affiliation:
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320–122nd Street, Edmonton, Alberta, Canada T6H 3S5
W.G. Riel
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
T.L. Shore
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
B. Peter
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
B.J. Cooke
Affiliation:
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320–122nd Street, Edmonton, Alberta, Canada T6H 3S5
V.G. Nealis
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
S.W. Taylor
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
2 Corresponding author (e-mail: Les.Safranyik@NRCan-RNCan.gc.ca.).

Abstract

The potential for mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), to expand its historical range in North America from west of the continental divide into the eastern boreal forest was assessed on the basis of analyses of the effects of climate and weather on brood development and survival, and key aspects of the interaction of mountain pine beetle with its hosts and associated organisms. Variation in climate suitability and high host susceptibility in the boreal forest create a finite risk of establishment and local persistence of low-level mountain pine beetle populations outside their historical range. Eventually, these populations could become widespread and cause epidemic infestations, creating an ecological pathway eastward through the boreal forest. Such infestations would reduce the commercial value of forests and impose an additional disturbance on native ecological systems.

Résumé

L'évaluation du potentiel d'expansion de l'aire historique de répartition du dendroctone du pin ponderosa, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), à partir de l'ouest de la ligne continentale de partage des eaux vers la forêt boréale de l'est est basée sur des analyses des effets du climat et des conditions météorologiques sur le développement et la survie du couvain et des aspects essentiels de l'interaction entre le dendroctone du pin ponderosa et ses hôtes et les organismes associés. La variabilité des conditions climatiques favorables et la forte vulnérabilité des hôtes dans la forêt boréale créent un risque fini d'un établissement éventuel et de la persistance de populations locales de faible densité du dendroctone du pin ponderosa hors de son aire historique de répartition. Ces populations pourraient éventuellement atteindre des répartitions étendues et causer des infestations épidémiques, en créant un passage écologique vers l'est à travers la forêt boréale. De telles infestations diminueraient la valeur commerciale des forêts et ajouteraient une perturbation supplémentaire aux systèmes écologiques indigènes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A.S., Currie, C.R., Cardoza, Y., Klepzig, K.D., and Raffa, K.F. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Canadian Journal of Forest Research, 39: 11331147. doi:10.1139/X09-034.CrossRefGoogle Scholar
Alberta Sustainable Resources Development. 2006. Beetle bulletin: mountain pine beetle activities in Alberta, December 1, 2006. Alberta Sustainable Resources Development, Edmonton, Alberta.Google Scholar
Alberta Sustainable Resources Development. 2008. Mountain pine beetle action: beetle bulletin [online]. Available from http://srd.alberta.ca/forests/health/pestalerts/mountainpinebeetles.aspx [accessed 11 June 2009].Google Scholar
Amman, G.D. 1969. Mountain pine beetle emergence in relation to depth of lodgepole pine bark. United States Forest Service Research Note INT-96.Google Scholar
Amman, G.D. 1973. Population changes of the mountain pine beetle in relation to elevation. Environmental Entomology, 2: 541547.CrossRefGoogle Scholar
Amman, G.D. 1984. Mountain pine beetle (Coleoptera: Scolytidae) mortality in three types of infestations. Environmental Entomology, 13: 184191.CrossRefGoogle Scholar
Amman, G.D., and Cole, W.E. 1983. Mountain pine beetle population dynamics in lodgepole pine forests. Part II. Population dynamics. United States Forest Service General Technical Report INT-145.Google Scholar
Aukema, B.H., Carroll, A.L., Zhu, J., Raffa, K.F., Sickley, T., and Taylor, S.W. 2006. Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography, 29: 427441. doi:10.1111/j.2006.0906-7590.04445.x.CrossRefGoogle Scholar
Aukema, B.H., Carroll, A.L., Zheng, Y., Zhu, J., Raffa, K.F., Moore, R.D., et al. 2008. Movement of outbreak populations of mountain pine beetle: influence of spatiotemporal patterns and climate. Ecography, 31: 348358. doi:10.1111/j.0906-7590.2007.05453.x.CrossRefGoogle Scholar
Ballard, R.G., Walsh, M.A., and Cole, W.E. 1982. Blue-stain fungi in xylem of lodgepole pine: a light-microscope study on extent of hyphal distribution. Canadian Journal of Botany, 60: 23342341.CrossRefGoogle Scholar
Bartell, N. 2008. A microsatellite analysis of the western Canadian mountain pine beetle (Dendroctonus ponderosae) epidemic: phylogeography and long distance dispersal patterns. M.Sc. thesis, University of Northern British Columbia, Prince George, British Columbia.Google Scholar
Beal, J.A. 1939. The Black Hills beetle, a serious enemy of Rocky Mountain pines. Farmers Bulletin No. 1824, United States Department of Agriculture, Washington, D.C.Google Scholar
Bentz, B.J., and Mullins, D.E. 1999. Ecology of mountain pine beetle (Coleoptera: Scolytidae) cold hardening in the Intermountain West. Environmental Entomology, 28: 577587.CrossRefGoogle Scholar
Bentz, B.J., Logan, J.A., and Amman, G.D. 1991. Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. The Canadian Entomologist, 123: 10831094. doi:10.4039/Ent1231083-5.CrossRefGoogle Scholar
Berryman, A.A. 1973. Management of mountain pine beetle populations in lodgepole pine ecosystems. In Management of lodgepole pine ecosystems—a symposium, 9–11 October 1973. Edited by Baumgartner, D.. Washington State University Cooperative Extension Service, Pullman, Washington. pp. 627650.Google Scholar
Boughner, C.C. 1964. Distribution of growing degree-days in Canada. Canadian Meteorological Memoirs No. 17, Meteorological Branch, Department of Transport, Toronto, Ontario.Google Scholar
Bright, D.E. Jr, 1976. The bark beetles of Canada and Alaska. Coleoptera: Scolytidae. Publication No. 1576, Biosystematics Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario.Google Scholar
Carroll, A.L., Taylor, S.W., Régnière, J., and Safranyik, L. 2004. Effects of climate and climate change on the mountain pine beetle. In Challenges and Solutions: Proceedings of the Mountain Pine Beetle Symposium, Kelowna, British Columbia, 30 and 31 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Information Report BC-X-399, Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 221230.Google Scholar
Carroll, A.L., Shore, T.L., and Safranyik, L. 2006. Direct control: theory and practice. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 155172.Google Scholar
Cerezke, H.F. 1995. Egg gallery, brood production, and adult characteristics of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), in three pine hosts. The Canadian Entomologist, 127: 955965. doi:10.4039/Ent127955-6.CrossRefGoogle Scholar
Cerezke, H.F., and Edmond, F.J. 1989. Forest insect and disease conditions in Alberta, Saskatchewan, Manitoba, and the Northwest Territories in 1987. Information Report NOR-X-300, Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta.Google Scholar
Clark, E.L. 2008. Terpene composition of lodgepole and jack pine and its relationship to the success of the mountain pine beetle. M.Sc. thesis, University of Northern British Columbia, Prince George, British Columbia.Google Scholar
Cole, W.E. 1975. Interpreting some mortality factor interactions within mountain pine beetle broods. Environmental Entomology, 4: 97102.CrossRefGoogle Scholar
Cole, W.E. 1981. Some risks and causes of mortality in mountain pine beetle populations: a long-term analysis. Researches on Population Ecology (Kyoto), 23: 116144. doi:10.1007/BF02514096.CrossRefGoogle Scholar
Cole, W.E., Amman, G.D., and Jensen, C.E. 1985. Mountain pine beetle dynamics in lodgepole pine forests. Part III: sampling and modeling of mountain pine beetle populations. United States Forest Service General Technical Report INT-188.CrossRefGoogle Scholar
De Leon, D. 1934. An annotated list of the parasites, predators, and other associated fauna of the mountain pine beetle in western white pine and lodgepole pine. The Canadian Entomologist, 66: 5161. doi:10.4039/Ent6651-3.CrossRefGoogle Scholar
De Leon, D. 1935 a. A study of Medetera aldrichii Wh. (Diptera: Dolichopodidae), a predator of the mountain pine beetle (Dendroctonus monticolae Hopk.). Entomologica Americana, 15: 5991.Google Scholar
De Leon, D. 1935 b. The biology of Coeloides dendroctoni Cushman, an important parasite of the mountain pine beetle. Annals of the Entomological Society of America, 27: 411423.CrossRefGoogle Scholar
Department of Energy, Mines, and Natural Resources. 1970. National Atlas of Canada. Department of Energy, Mines, and Natural Resources, Ottawa, Ontario.Google Scholar
Dunne, T., and Leopold, L.B. 1978. Water and environmental planning. W.E. Freeman, San Francisco, California.Google Scholar
Environment Canada. 2004. An invasive alien species strategy for Canada [online]. Available from http://www.ec.gc.ca/eee-ias/default.asp?lang=En&n=98DB3ACF-1 [accessed 19 June 2009].Google Scholar
Evenden, J.D., Bedard, W.D., and Struble, G.R. 1943. The mountain pine beetle, an important enemy of western pines. Circular No. 664, United States Department of Agriculture, Washington, D.C.Google Scholar
Fall, A., Fortin, M.-J., Manseau, M., and O'Brien, D. 2007. Spatial graphs: principles and applications for habitat connectivity. Ecosystems, 10: 448461. doi:10.1007/s10021-007-9038-7.CrossRefGoogle Scholar
Flato, G.M., Boer, G.J., Lee, W., McFarlane, N., Ramsden, D., Reader, M., and Weaver, A. 2000. The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dynamics, 16: 451467. doi:10.1007/s003820050339.CrossRefGoogle Scholar
Franceschi, V.R., Krokene, P., Christiansen, E., and Krekling, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167: 353376. PMID:15998390 doi:10.1111/j.1469-8137.2005.01436.x.CrossRefGoogle ScholarPubMed
Furniss, M.M., and Schenk, J.A. 1969. Sustained natural infestations by the mountain pine beetle in seven new Pinus and Picea hosts. Journal of Economic Entomology, 62: 518519.CrossRefGoogle Scholar
Harary, F. 1972. Graph theory. Addison Wesley, Reading, Massachusetts.Google Scholar
Hocker, H.W. 1979. Introduction to forest biology. John Wiley and Sons, New York.Google Scholar
Huber, D.P.W., Aukema, B.H., Hodgkinson, R.S., and Lindgren, B.S. 2009. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce Picea engelmannii × glauca by mountain pine beetle Dendroctonus ponderosae. Agricultural and Forest Entomology, 11: 8389. doi:10.1111/j.1461-9563.2008.00411.x.CrossRefGoogle Scholar
Hynum, B.G., and Berryman, A.A. 1980. Dendroctonus ponderosae (Coleoptera: Scolytidae): preaggregation landing and gallery initiation on lodgepole pine. The Canadian Entomologist, 112: 185191. doi:10.4039/Ent112185-2.CrossRefGoogle Scholar
Jackson, P.L., Straussfogel, D., Lindgren, B.S., Mitchell, S., and Murphy, B. 2008. Radar observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae) in flight above the forest canopy. Canadian Journal of Forest Research, 38: 23132327. doi:10.1139/X08-066.CrossRefGoogle Scholar
Keeling, C.I., and Bohlmann, J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist, 170: 657675. PMID:16684230 doi:10.1111/j.1469-8137.2006.01716.x.CrossRefGoogle ScholarPubMed
Keitt, T.H., Urban, D.L., and Milne, B.T. 1997. Detecting critical scales in fragmented landscapes [online]. Conservation Ecology 1:4. Available from http://www.consecol.org/vol1/iss1/art4 [accessed 11 June 2009].CrossRefGoogle Scholar
Korol, J.J. 1985. A simulation of predation by non-game birds on the mountain pine beetle (Dendroctonus ponderosae Hopkins). M.Sc. thesis, University of British Columbia, Vancouver, British Columbia.Google Scholar
Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., et al. 2008. Mountain pine beetle and forest carbon: feedback to climate change. Nature (London), 452: 987990. PMID:18719588 doi:10.1038/nature06777.CrossRefGoogle ScholarPubMed
Langor, D.W. 1989. Host effects on the phenology, development, and mortality of field populations of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist, 121: 149157. doi:10.4039/Ent121149-2.CrossRefGoogle Scholar
Lee, S., Kim, J.J., and Breuil, C. 2005. Leptographium longiclavatum sp. nov., a new species associated with the mountain pine beetle, Dendroctonus ponderosae. Mycological Research, 109: 11621170. PMID:16279410 doi:10.1017/S0953756205003588.CrossRefGoogle Scholar
Lee, S., Kim, J.J., and Breuil, C. 2006 a. Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Diversity, 22: 91105.Google Scholar
Lee, S., Kim, J.-J., and Breuil, C. 2006 b. Pathogenicity of Leptographium longiclavatum associated with Dendroctonus ponderosae to Pinus contorta. Canadian Journal of Forest Research, 36: 28642872. doi:10.1139/X06-194.CrossRefGoogle Scholar
Logan, J.A., and Bentz, B.J. 1999. Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environmental Entomology, 28: 924934.CrossRefGoogle Scholar
Logan, J.A., and Powell, J.A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47: 160173.CrossRefGoogle Scholar
Logan, J.A., Bolstad, P.V., Bentz, B.J., and Perkins, D.L. 1995. Assessing the effects of changing climate on mountain pine beetle dynamics. In Proceedings of the Interior West Global Change Workshop. Edited by Tinus, R.W.. United States Forest Service General Technical Report RM-GTR-262.Google Scholar
Lynch, H., Renkin, R., Crabtree, R., and Moorcroft, P. 2006. The influence of previous mountain pine beetle (Dendroctonus ponderosae) activity on the 1988 Yellowstone fires. Ecosystems, 9: 13181327. doi:10.1007/s10021-006-0173-3.CrossRefGoogle Scholar
McCambridge, F.W. 1971. Temperature limits of flight of the mountain pine beetle, Dendroctonus ponderosae. Annals of the Entomological Society of America, 64: 534535.CrossRefGoogle Scholar
McGregor, M.D. 1985. The conflict between people and the beetle. In Insect and disease conditions in the United States. Edited by Loomis, R.C., Tucker, S. and Hoffacker, T.H.. United States Forest Service General Report WO-46.Google Scholar
Mock, K.E., Bentz, B.J., O'Neill, E.M., Chong, J.P., Orwin, J., and Pfrender, M.E. 2007. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae). Molecular Ecology, 16: 553568. PMID:17257113 doi:10.1111/j.1365-294X.2006.03158.x.CrossRefGoogle Scholar
Moeck, H.A., and Safranyik, L. 1984. Assessment of predator and parasitoid control of bark beetles. Information Report BC-X-248, Pacific Forest Research Centre, Ministry of State for Forestry, Agriculture Canada, Victoria, British Columbia.Google Scholar
Nalder, I.A., and Wein, R.W. 1998. Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92: 211225. doi:10.1016/S0168-1923(98)00102-6.CrossRefGoogle Scholar
Nealis, V., and Peter, B. 2008. Risk assessment of the threat of mountain pine beetle to Canada's boreal and eastern pine forests. Information Report BC-X-417, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia.Google Scholar
O'Brien, D.T., Manseau, M., Fall, A., and Fortin, M.-J. 2006. Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biological Conservation, 130: 7083. doi:10.1016/j.biocon.2005.12.014.CrossRefGoogle Scholar
Otvos, I.S. 1965. Studies on avian predators of Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae) with special reference to Picidae. The Canadian Entomologist, 97: 11841199. doi:10.4039/Ent971184-11.CrossRefGoogle Scholar
Powell, J.A., Jenkins, J.L., Logan, J.A., and Bentz, B.J. 2000. Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology, 62: 977998. PMID:11016093 doi:10.1006/bulm.2000.0192.CrossRefGoogle ScholarPubMed
Powell, J.M. 1966. Distribution and outbreaks of Dendroctonus ponderosae in forests of Western Canada. Information Report A-X-2, Forestry Research Laboratory, Canadian Department of Forestry, Calgary, Alberta.Google Scholar
Power, K., and Gillis, M.D. 2006. Canada's forest inventory 2001. Information Report BC-X-408E, Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia.Google Scholar
Price, D.T., McKenney, D.W., Caya, D., and Côté, H. 2001. Transient climate change scenarios for high resolution assessment of impacts on Canada's forest ecosystems. Report to Climate Change Action Fund, Ottawa, Ontario, and the Climate Change Impacts and Adaptation Program, Natural Resouces Canada, Ottawa, Ontario.Google Scholar
Raffa, K.F., and Berryman, A.A. 1982. Gustatory cues in the orientation of Dendroctonus ponderosae (Coleoptera: Scolytidae) to host trees. The Canadian Entomologist, 114: 97104. doi:10.4039/Ent11497-2.CrossRefGoogle Scholar
Raffa, K.F., and Smalley, E.B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia (Berlin), 102: 285295. doi:10.1007/BF00329795.CrossRefGoogle ScholarPubMed
Raffa, K.F., Aukema, B.H., Erbilgin, N., Klepzig, K.D., and Wallin, K.F. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Advances in Phytochemistry, 39: 80118.Google Scholar
Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., and Romme, W.H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: dynamics of biome-wide bark beetle eruptions. BioScience, 58: 501517. doi:10.1641/B580607.CrossRefGoogle Scholar
Rankin, L.J., and Borden, J.H. 1991. Competitive interactions between the mountain pine beetle and the pine engraver in lodgepole pine. Canadian Journal of Forest Research, 21: 10291036. doi:10.1139/x91-141.CrossRefGoogle Scholar
Régnière, J. 1996. A generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology, 25: 869881.CrossRefGoogle Scholar
Régnière, J., and Bentz, B.J. 2007. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology, 53: 559572. PMID:17412358 doi:10.1016/j.jinsphys.2007.02.007.CrossRefGoogle ScholarPubMed
Régnière, J., and Sharov, A. 1999. Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example. International Journal of Biometeorology, 42: 146152. doi:10.1007/s004840050098.Google Scholar
Régnière, J., and St-Amant, R. 2007. Stochastic simulation of daily air temperature and precipitation from monthly normals in North America north of Mexico. International Journal of Biometeorology, 51: 415430. PMID:17225130 doi:10.1007/s00484-006-0078-z.CrossRefGoogle ScholarPubMed
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. The Canadian Entomologist, 94: 531538. doi:10.4039/Ent94531-5.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. The Canadian Entomologist, 95: 225238. doi:10.4039/Ent95225-3.Google Scholar
Rice, A.V., Thormann, M.N., and Langor, D.W. 2007 a. Mountain pine beetle associated bluestain fungi cause lesions on jack pine, lodgepole pine, and lodgepole 6 jack pine hybrids in Alberta. Canadian Journal of Botany, 85: 307315. doi:10.1139/B07-014.CrossRefGoogle Scholar
Rice, A.V., Thormann, M.N., and Langor, D.W. 2007 b. Virulence of, and interactions among, mountain pine beetle associated blue-stain fungi on two pine species and their hybrids in Alberta. Canadian Journal of Botany, 85: 316323. doi:10.1139/B07-016.CrossRefGoogle Scholar
Rice, A.V., Thormann, M.N., and Langor, D.W. 2008. Mountain pine beetle-associated blue-stain fungi are differentially adapted to boreal temperatures. Forest Pathology, 38: 113123.CrossRefGoogle Scholar
Safranyik, L. 1978. Effects of climate and weather on mountain pine beetle populations. In Proceedings of a Symposium: Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. April 25–27, 1978. Pullman, Washington. Edited by Kibbee, D.L., Berryman, A.A., Amman, G.D., and Stark, R.W.. University of Idaho, Moscow, Idaho. pp. 7784.Google Scholar
Safranyik, L., and Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 366.Google Scholar
Safranyik, L., and Linton, D.A. 1982. Survival and development of mountain pine beetle broods in jack pine bolts from Ontario. Canadian Forest Service Research Notes No. 2 pp. 1718.Google Scholar
Safranyik, L., and Linton, D.A. 1983. Brood production by three spp. of Dendroctonus (Coleoptera: Scolytidae) in bolts from host and nonhost trees. Journal of the Entomological Society of British Columbia, 80: 1013.Google Scholar
Safranyik, L., and Linton, D.A. 1998. Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera: Scolytidae) in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. Journal of the Entomological Society of British Columbia, 95: 8187.Google Scholar
Safranyik, L., and Whitney, H.S. 1985. Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. The Canadian Entomologist, 117: 185192. doi:10.4039/Ent117185-2.CrossRefGoogle Scholar
Safranyik, L., Shrimpton, D.M., and Whitney, H.S. 1974. Management of lodgepole pine to reduce losses from the mountain pine beetle. Technical Report No. 1, Canadian Forest Service, Victoria, British Columbia.Google Scholar
Safranyik, L., Shrimpton, D.M., and Whitney, H.S. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. In Management of lodgepole pine ecosystems. Edited by Baumgartner, D.M.. Washington State University Cooperative Extension Service, Pullman, Washington. pp. 406428.Google Scholar
Safranyik, L., Shore, T.L., and Linton, D.A. 1996. Ipsdienol and lanierone increase Ips pini Say (Coleoptera: Scolytidae) attack and brood density in lodgepole pine infested by mountain pine beetle. The Canadian Entomologist, 128: 199207. doi:10.4039/Ent128199-2.CrossRefGoogle Scholar
Safranyik, L., Shore, T.L., Linton, D.A., and Rankin, L. 1999. Effects of induced competitive interactions with secondary bark beetle species on establishment and survival of mountain pine beetle broods. Information Report BC-X-384, Canadian Forest Service, Victoria, British Columbia.Google Scholar
Safranyik, L., Linton, D.A., and Shore, T.L. 2000. Temporal and vertical distribution of bark beetles (Coleoptera: Scolytidae) captured in barrier traps at baited and unbaited lodgepole pines the year following attack by the mountain pine beetle. The Canadian Entomologist, 132: 799810. doi:10.4039/Ent132799-6.CrossRefGoogle Scholar
Safranyik, L., Shore, T.L., Carroll, A.L., and Linton, D.A. 2004. Bark beetle (Coleoptera: Scolytidae) diversity in spaced and unmanaged mature lodgepole pine (Pinaceae) in south-eastern British Columbia. Forest Ecology and Management, 200: 2338. doi:10.1016/j.foreco. 2004.06.004.CrossRefGoogle Scholar
Seybold, S.J., Huber, D.P.W., Lee, J.C., Graves, A.D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Review, 5: 143178. doi: 10.1007/s11101-006-9002-8.CrossRefGoogle Scholar
Shore, T.L., and Safranyik, L. 1992. Susceptibility and risk rating systems for the mountain pine beetle in lodgepole pine stands. Information Report BC-X 336, Pacific and Yukon Region, Forestry Canada, Victoria, British Columbia.Google Scholar
Shore, T.L., Riel, B.G., Safranyik, L., and Fall, A. 2006. Decision support systems. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 193232.Google Scholar
Shore, T.L., Riel, W.G., and Fall, A. 2008. Incorporating present and future climatic suitability into decision support tools to predict geographic spread of the mountain pine beetle. Mountain Pine Beetle Working Paper 2008-10, Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia.Google Scholar
Shrimpton, D.M., and Thomson, A.J. 1985. Relationship between phloem thickness and lodgepole pine growth characteristics. Canadian Journal of Forest Research, 15: 10041008. doi:10.1139/x85-161.CrossRefGoogle Scholar
Smith, G.D. 2008. Maintenance of endemic Dendroctonus ponderosae populations through interactions with a secondary bark beetle, Pseudips mexicanus. M.Sc. thesis, University of Northern British Columbia, Prince George, British Columbia.Google Scholar
Smith, R.H., Cramer, J.P., and Carpender, E.J. 1981. New record of introduced hosts for the mountain pine beetle in California. United States Forest Service Research Note PSW-354.Google Scholar
Solheim, H. 1995. Early stages of blue-stain fungus invasion of lodgepole pine sapwood following mountain pine beetle attack. Canadian Journal of Botany, 73: 7074. doi:10.1139/b95-009.CrossRefGoogle Scholar
Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Canadian Journal of Zoology, 42: 87101. doi:10.1139/z64-009.CrossRefGoogle Scholar
Taylor, P.D., Fahrig, L., Henein, K., and Merriam, G. 1993. Connectivity is a vital element of landscape structure. Oikos, 68: 571572. doi:10.2307/3544927.CrossRefGoogle Scholar
Taylor, S.W., and Carroll, A.L. 2004. Disturbance, forest age dynamics and mountain pine beetle outbreaks in BC: a historical perspective. In Challenges and Solutions: Proceedings of the Mountain Pine Beetle Symposium, Kelowna, British Columbia, 30231 October 2003. Edited by Shore, T.L., Brooks, J.E., and Stone, J.E.. Information Report BC-X-399, Pacific Forestry Centre, Canadian Forest Service, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 4151.Google Scholar
Taylor, S.W., Carroll, A.L., Alfaro, R.I., and Safranyik, L. 2006. Forest, climate and mountain pine beetle dynamics. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 6794.Google Scholar
Thomson, A.J., and Shrimpton, D.M. 1984. Weather associated with the start of mountain pine beetle outbreaks. Canadian Journal of Forest Research, 14: 255258. doi:10.1139/x84-049.CrossRefGoogle Scholar
Unger, L. 1993. Mountain pine beetle. Forest Pest Leaflet No. 76, Pacific Forestry Centre, Forestry Canada, Victoria, British Columbia.Google Scholar
Wallin, K.F., and Raffa, K.F. 1999. Altered constitutive and inducible phloem monoterpenes following natural defoliation of jack pine: implications to host mediated interguild interactions and plant defense theories. Journal of Chemical Ecology, 25: 861880. doi:10.1023/A:1020853019309.CrossRefGoogle Scholar
Whitehead, R.J., Safranyik, L., and Shore, T.L. 2006. Preventive management. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 173192.Google Scholar
Yamaoka, Y., Swanson, R.H., and Hiratsuka, Y. 1990. Inoculation of lodgepole pine with four blue-stain fungi associated with mountain pine beetle, monitored by a heat pulse velocity (HPV) instrument. Canadian Journal of Forest Research, 20: 3136. doi:10.1139/x90-005.CrossRefGoogle Scholar