Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T18:00:51.273Z Has data issue: false hasContentIssue false

PROTECTION OF BACILLUS THURINGIENSIS FROM INACTIVATION BY SUNLIGHT

Published online by Cambridge University Press:  31 May 2012

O. N. Morris
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, Sault Ste. Marie, Ontario P6A 5M7

Abstract

The effectiveness of several commercially available sunlight screens in protecting Bacillus thuringiensis Berliner (B.t.) against inactivation by solar irradiation was assessed in the laboratory and field. Spore viability and residual insecticidal activity of B.t. were rapidly reduced by solar radiation in the range of 300 to 400 nm wavelength. The addition of ultraviolet absorbers, Uvinul DS49 and Erio Acid Red, to a Thuricide spray formulation prolonged the insecticidal residual activity on coniferous trees, resulting in greater effectiveness against the spruce budworm, Choristoneura fumiferana (Clem.), compared with a formulation lacking these protectants.

Résumé

On a conçu des expériences en vue de tester la protection conférée par plusieurs écrans solaires vendus sur le marché contre l'inactivation rapide des préparations commerciales de Bacillus thuringiensis Berliner (B.t.) par la lumière solaire. Le rayonnement solaire de 300 à 400 nm a rapidement réduit la viabilité des spores ainsi que l'activité insecticide résiduelle du B.t. L'ajout d'absorbeurs d'U.-V. (Uvinul DS49, rouge acide Erio et mélasse) à une préparation de B.t. à pulvériser peut prolonger son activité insecticide résiduelle sur les conifères et accroître son efficacité antitordeuse.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. M., Nagamma, M. V., and Majumdar, S. I.. 1973. Studies on granular formulations of Bacillus thuringiensis Berliner. Pestic. Sci. 4: 1923.CrossRefGoogle Scholar
Andrews, R. E., Parks, L. W., and Spence, K. D.. 1980. Some effects of Douglas fir terpenes on certain microorganisms. Appl. environ. Microbiol. 40: 301304.CrossRefGoogle ScholarPubMed
Beegle, C. C., Dulmage, H. T., Wolfenbarger, D. A., and Martinez, E.. 1981. Persistence of Bacillus thuringiensis Berliner insecticidal activity on cotton foliage. Environ. Entomol. 10: 400401.CrossRefGoogle Scholar
Brand, R. J., Pinnock, D. E., Jackson, K. L., and Milstead, J. E.. 1975. Methods for assessing field persistence of Bacillus thuringiensis spores. J. invert. Path. 25: 199208.CrossRefGoogle ScholarPubMed
Burges, N. D., Hillyer, S., and Chanter, D. O.. 1975. Effect of ultraviolet and gamma rays on the activity of delta endotoxin protein crystals of Bacillus thuringiensis. J. invert. Path. 25: 59.CrossRefGoogle ScholarPubMed
Burges, H. D. and Thompson, E. M.. 1971. Standardization and assay of microbial insecticides. pp. 591622in Burges, H. D. and Hussay, N. W. (Eds), Microbial Control of Insects and Mites. Academic Press, N.Y.Google Scholar
Cantwell, G. E. 1967. Inactivation of biological insecticides by radiation. J. invert. Path. 9: 138140.CrossRefGoogle Scholar
Cavalcaselle, B. 1976. Valutazione dell'efficacia di due preparati commerciali a base di Bacillus thuringiensis nella lotta contro la Processionaria del Pino. Cellulose et Carta 37: 2126.Google Scholar
Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge Univ. Press, Cambridge, U.K.333 pp.Google Scholar
Franz, J. M. 1971. Influence of environment and modem trends in crop management on microbial control. pp. 407444in Burges, H. D. and Hussay, N. W. (Eds.), Microbial Control of Insects and Mites. Academic Press, N.Y.Google Scholar
Fujioka, R. S., Hashimoto, H. H., Siwak, E. B., and Young, R. H. F.. 1981. Effect of sunlight on survival of indicator bacteria in sea water. Appl. environ. Microbiol. 41: 690696.CrossRefGoogle Scholar
Fuxa, J. R. and Brooks, W. M.. 1978. Persistence of spores of Vairimorpha necatrix on tobacco, cotton, and soybean foliage. J. econ. Ent. 71: 169172.CrossRefGoogle Scholar
Gardner, W. A., Sutton, R. M., and Noblet, R.. 1977. Persistence of Beauveria bassiana, Nomuraea rileyi, and Nosema necatrix on soybean foliage. Environ. Ent. 6: 616618.CrossRefGoogle Scholar
Griego, V. M. and Spence, K. D.. 1978. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl. environ. Microbiol. 35: 906910.CrossRefGoogle ScholarPubMed
Hollander, A. 1943. Effect of long ultraviolet and short visible radiation (3500–4900 A) on Escherichia coli. J. Bacteriol. 46: 531541.CrossRefGoogle Scholar
Hostetter, D. L., Ignoffo, C. M., and Kearby, W. H.. 1975. Persistence of formulations of Bacillus thuringiensis spores and crystals on eastern red cedar foliage in Missouri. J. Kans. Ent. Soc. 48: 189193.Google Scholar
Ignoffo, C. M. and Couch, T. L.. 1981. The nucleopolyhedrosis virus of Heliothis species as a microbiol insecticide. pp. 329362in Burges, H. D. (Ed.), Microbiol Control of Insects and Mites. Academic Press, N.Y.Google Scholar
Ignoffo, C. M. and Hostetter, D. L.. 1977. Summary. In Environmental Stability of Microbiol Insecticides. Misc. Publs ent. Soc. Am. 10: 117119.Google Scholar
Jagger, J. 1967. Introduction to Research in Ultraviolet Photobiology. Prentice Hall, N.J.164 pp.Google Scholar
Jaques, R. P. 1972. The inactivation of foliar deposits of viruses of Trichoplusia ni (Lepidoptera: Noctuidae) and Pieris rapae (Lepidoptera: Pieridae) and test on protectant additives. Can. Ent. 104: 19851994.CrossRefGoogle Scholar
Jaques, R. P. 1977. Stability of entomopathogenic viruses. Misc. Publs. ent. Soc. Am. 10: 99116.Google Scholar
Johnson, F. S. 1976. Average latitudinal variation in ultraviolet radiation at the earth's surface. Photochem. Photobiol. 23: 179188.CrossRefGoogle ScholarPubMed
Kaya, H. K. 1977. Survival of spores of Vairimorpha (Nosema) necatrix (Microsporida: Nosematidae) exposed to sunlight, ultraviolet radiation, and high temperature. J. invert. Path. 30: 192198.CrossRefGoogle Scholar
Kearby, W. H., Hostetter, D. L., and Ignoffo, C. M.. 1972. Laboratory and field evaluation of Bacillus thuringiensis for control of bagworm. J. econ. Ent. 65: 477480.CrossRefGoogle Scholar
Kelley, J. F. and Anthony, D. W.. 1979. Susceptibility of spores of the microsporidian Nosema algerae to sunlight and germicidal ultraviolet radiation. J. invert. Path. 34: 164169.CrossRefGoogle Scholar
Kleczowski, A. 1967. Effects of ionizing radiation on viruses. Adv. Virus Res. 4: 191200.CrossRefGoogle Scholar
Leong, K. L. H., Kano, R. J., and Kubinski, A. M.. 1980. Factors affecting Bacillus thuringiensis total field persistence. Environ. Ent. 9: 593599.CrossRefGoogle Scholar
Maddox, J. V. 1977. Stability of entomopathogenic protozoa. Misc. Publs. ent. Soc. Am. 10: 318.Google Scholar
Moore, A. and Morris, O. N.. 1982. An improved technique for dosing larvae of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) with measured quantities of Bacillus thuringiensis var. kurstaki. Can. Ent. 114: 8991.CrossRefGoogle Scholar
Morris, O. N. 1972. Inhibitory effects of foliage extracts of some forest trees on commercial Bacillus thuringiensis. Can. Ent. 104: 13571361.CrossRefGoogle Scholar
Morris, O. N. 1977. Long-term study of the effectiveness of Bacillus thuringiensis – acephate combinations against the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 109: 12391248.CrossRefGoogle Scholar
Morris, O. N. 1980. Report of the 1979 CANUSA Bacillus thuringiensis (B.t.) spray trials. For. pest Mangt. Inst., Can. For Serv. Rep. FPM-X-40.Google Scholar
Morris, O. N., Armstrong, J. A., and Hilebrand, M. J.. 1977. Aerial field trials with a new formulation of Bacillus thuringiensis against the spruce budworm, Choristoneura fumiferana (Clem.). Chem. Control Res. inst., Can. For. Serv. Rep. CC-X-144. 26 pp.Google Scholar
Morris, O. N. and McErlane, B.. 1975. Studies on the protection of insect pathogens from sunlight inactivation. I. Preliminary laboratory tests. Chem. Control Res. Inst., Can. For. Serv. Rep. CC-X-112. 45 pp.Google Scholar
Morris, O. N. and Moore, A.. 1975. Studies on the protection of insect pathogens from sunlight inactivation. II. Preliminary field trials. Chem. Control Res. Inst., Can. For. Serv. Rep. CC-X-113. 33 pp.Google Scholar
Pinnock, D. E., Brand, R. J., and Milstead, J. E.. 1971. The field persistence of Bacillus thuringiensis spores. J. invert. Path. 18: 405511.CrossRefGoogle Scholar
Pinnock, D. E., Brand, R. J., Jackson, K. L., and Milstead, J. E.. 1974. The field persistence of Bacillus thuringiensis spores on Cercis occidentalis leaves. J. invert. Path. 23: 341346.CrossRefGoogle ScholarPubMed
Raum, E. S. and Jackson, R. D.. 1966. Encapsulation as a technique for formulating microbiol and chemical insecticides. J. econ. Ent. 59: 620622.Google Scholar
Roberts, T. A. and Hutchins, A. D.. 1966. Resistance of spores. pp. 611670in Gould, G. W. aad Hurst, A. (Eds), The Bacterial Spores. Academic Press, N.Y.Google Scholar
Roberts, W. D. and Campbell, A. S.. 1977. Stability of entomopathogenic fungi. Misc. Publs. ent. Soc. Am. 10: 1976.Google Scholar
Seliger, H. H. and McElroy, W. D.. 1965. Light: Physical and Biological Action. Academic Press, N.Y.Google Scholar
Setlow, J. K. 1966. Photoreactivation. Radiat. Res. Suppl. 6: 141155.CrossRefGoogle Scholar
Sikorowski, R. P. and Lashomb, J. H.. 1977. Effect of sunlight on the infectivity of Nosema heliothidis spores isolated from Heliothis zea. J. invert. Path. 30: 9596.CrossRefGoogle ScholarPubMed
Sneh, B. and Schuster, S.. 1981. Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis previously fed B. thuringiensis treated leaves. J. invert. Path. 37: 295305.CrossRefGoogle Scholar
Spikes, J. D. and Ghiron, C. A.. 1964. Photodynamic effects of biological systems. pp. 309338in Augenstein, L., Mason, R., and Rosenberg, B. (Eds.), Physical Processes in Radiation Biology. Academic Press, N.Y.CrossRefGoogle Scholar
Steel, R. G. D. and Torrie, J. H.. 1970. Principles and Procedures of Statistics. McGraw Hill, N.Y.Google Scholar
Svestka, M. 1974. The use of Bacillus thuringiensis for the biological control of leaf-eating pests of flood-plain forests in S. Moravia. Lesnicti 20: 439464.Google Scholar
Thomas, W. G. 1966. Protection of cosmetic colors by means of UV absorbers. J. Soc. Cosmetic Chemists 17: 553570.Google Scholar
Vankova, J. and Svestka, M.. 1976. Persistenz und Wirksamkeit von Bacillus thuringiensis – Preparaten in Freilandversuchen. Anz. Schädlingsk. Pflanz. Umwelts. 49: 3338.CrossRefGoogle Scholar
Webb, S. J. 1961. Factors affecting the viability of airborne bacteria. IV. The inactivation and reactivation of airborne Serratia marcescens by ultraviolet and visible light. Can. J. Microbiol 7: 607619.CrossRefGoogle ScholarPubMed
Webb, S. J. 1963. The effect of relative humidity and light on air-dried organisms. J. appl. Bact. 26: 307313.CrossRefGoogle Scholar
Webb, S. J. and Tai, C. C.. 1969. Physiological and genetic implication of selective mutation by light at 320–400 μm. Nature 224: 11231125.CrossRefGoogle Scholar