Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:56:04.819Z Has data issue: false hasContentIssue false

REDUNDANCY IN THE SEMIOCHEMICAL MESSAGE REQUIRED TO INDUCE ATTACK ON LODGEPOLE PINES BY THE MOUNTAIN PINE BEETLE, DENDROCTONUS PONDEROSAE HOPKINS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

J.H. Borden
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
L.J. Chong
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
B.S. Lindgren
Affiliation:
Phero Tech Inc., 7572 Progress Way, R.R.#5, Delta, British Columbia, Canada V5L 3K3

Abstract

Baited tree experiments confirmed the hypothesis that frontalin is a multifunctional pheromone that can induce the mountain pine beetle, Dendroctonus ponderosae Hopkins, to aggregate on and mass-attack lodgepole pine, Pinus conforta var. latifolia Engelmann. A re-examination was undertaken of the role of four known semiochemicals, myrcene, trans-verbenol, exo-brevicomin, and frontalin, tested as tree baits alone (with the exception of myrcene) and in all possible combinations. There was considerable redundancy evident in the semiochemical signal. For example, myrcene + frontalin and trans-verbenol + exo-brevicomin induced attack on baited trees at similar levels of intensity. The results suggest that beetles of either sex could initiate a mass attack. During the most attractive phase of host colonization, redundancy in the semiochemical signal could act as a fail-safe mechanism to ensure perception of and response to odors from an attacked tree. In addition the standard, commercial, tree bait containing myrcene, trans-verbenol, and exo-brevicomin might be modified by deleting myrcene, making a more acceptable and cost-effective operational bait.

Résumé

Des expériences avec des arbres amorcés ont fortifié des hypothèses que la frontaline est une phéromone de fonction multiple, qui peut influer le dendroctone du pin ponderosa, Dendroctonus ponderosae Hopkins, de se rassembler dessus et d’attaquer en masse le pin tordu, Pinus conforta var. latifolia Engelmann. Un nouvel examen du rôle de quatre substances sémiochimiques connues, la myrocène, le trans-verbénol, l’exo-brévicomine et la frontaline a été entrepris, en les essayant comme appâts dans les arbres seulement (sauf pour la myrocène) et dans toutes les combinaisons possibles. Une redondance considérable a été évidente au signal sémiochimique. Par exemple, myrocène + frontaline et trans-verbénol + exo-brévicomine ont induit des attaques de niveaux d’intensité semblables aux arbres amorcés. Les résultats ont suggéré que les dendroctones de n’importe quel sexe pourrait initier une attaque en masse. Pendant la phase la plus attrayante de la colonisation de l’hôte, la redondance du signal sémiochimique pouvait agir comme un mécanisme manqué-réussi pour assurer la perception et la réponse aux odeurs émanant d’un arbre attaqué. De plus, l’appât commercial normal pour les arbres contenant la myrocène, le trans-verbénol et l’exo-brévicomine pourrait être modifié par la suppression de myrocène, pour le faire plus acceptable et un appât opératif économique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billings, R.F., Gara, R.I., and Hrutfiord, B.F.. 1976. Influence of ponderosa pine resin volatiles on the response of Dendroctonus ponderosae to synthetic trans-verbenol. Environ. Ent. 5: 171179.CrossRefGoogle Scholar
Borden, J.H. 1990. Use of semiochemicals to manage coniferous tree pests. pp. 281–315 in Ridgway, R., Silverstein, R.M., and Inscoe, M. (Eds.), Practical Applications of Insect Pheromones and Other Attractants. Marcel Dekker, New York, NY.Google Scholar
Borden, J.H., Chong, L.J., and Lacey, T.E.. 1986. Pre-logging baiting with semiochemicals for the mountain pine beetle, Dendroctonus ponderosae, in high hazard stands of lodgepole pine. For. Chron. 62: 2023.CrossRefGoogle Scholar
Borden, J.H., Conn, J.E., Friskie, L.M., Scott, B.E., Chong, L.J., Pierce, H.D. Jr., and Oehlschlager, A.C.. 1983. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae in British Columbia: baited tree studies. Can. J. For. Res. 13: 325333.CrossRefGoogle Scholar
Borden, J.H., and Lindgren, B.S.. 1989. The role of semiochemicals in IPM of the mountain pine beetle. pp. 247–255 in Payne, T.L., and Saarenmaa, H. (Eds.), Integrated Control of Scolytid Bark Beetles. Virginia Polytechnic Inst. and State Univ., Blacksburg, VA.Google Scholar
Borden, J.H., Ryker, L.C., Chong, L.J., Pierce, H.D., Jr., Johnston, B.D., and Oehlschlager, A.C.. 1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Can. J. For. Res. 17: 118128.CrossRefGoogle Scholar
Chatelain, M.P., and Schenk, J.A.. 1984. Evaluation of frontalin and exo-brevicomin as kairomones to control mountain pine beetle in lodgepole pine. Environ. Ent. 13: 16661674.CrossRefGoogle Scholar
Conn, J.E., Borden, J.H., Scott, B.E., Friskie, L.M., Pierce, H.D. Jr., and Oehlschlager, A.C.. 1983. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae, in British Columbia: field trapping studies. Can. J. For. Res. 13: 320324.CrossRefGoogle Scholar
Geiszler, D.R., Gallucci, V.F., and Gara, R.I.. 1980. Modelling the dynamics of mountain pine beetle aggregation in a lodgepole pine stand. Oecologia 46: 244253.CrossRefGoogle Scholar
Geiszler, D.R., and Gara, R.I.. 1978. Mountain pine beetle attack dynamics in lodgepole pine. pp. 182–187 in Berryman, A.A., Amman, G.D., and Stark, R.W..(Eds.), Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. Univ. Idaho, Moscow, and USDA For. Serv., Washington, DC.Google Scholar
Hunt, D.W.A., Borden, J.H., Lindgren, B.S., and Gries, G.. 1989. The role of autoxidation of alpha-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. J. For. Res. 19: 12751282.CrossRefGoogle Scholar
Libbey, L.M., Ryker, L.C., and Yandell, K.L.. 1985. Laboratory and field studies of volatiles released by Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Z. angew. Ent. 100: 381392.CrossRefGoogle Scholar
Linn, C.E. Jr., Bjostad, L.B., Du, J.W., and Roelofs, W.L.. 1984. Redundancy in a chemical signal: behavioral responses of male Trichoplusia ni to a 6-component sex pheromone blend. J. Chem. Ecol. 10: 16351658.CrossRefGoogle Scholar
Pitman, G.B. 1971. Trans-verbenol and alpha-pinene: their utility in manipulation of the mountain pine beetle. J. econ. Ent. 64: 426430.CrossRefGoogle Scholar
Pitman, G.B., and Vité, J.P.. 1969. Aggregation behavior of Dendroctonus ponderosae (Coleoptera: Scolytidae) in response to chemical messengers. Can. Ent. 101: 143149.CrossRefGoogle Scholar
Pitman, G.B., Vité, J.P., Kinzer, G.W., and Fentiman, A.F. Jr., 1968. Bark beetle attractants: trans-verbenol isolated from Dendroctonus. Nature 218: 168169.CrossRefGoogle Scholar
Rudinsky, J.A., Morgan, M.E., Libbey, L.M., and Putnam, T.B.. 1974. Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Environ. Ent. 3: 9098.CrossRefGoogle Scholar
Ryker, L.C., and Libbey, L.M.. 1982. Frontalin in the male mountain pine beetle. J. Chem. Ecol. 8: 13991409.CrossRefGoogle ScholarPubMed
Ryker, L.C., and Yandell, K.L.. 1983. Effect of verbenone on aggregation of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) to synthetic attractant. Z. angew. Ent. 96: 452459.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.Google Scholar