Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:48:12.580Z Has data issue: false hasContentIssue false

RELATIONSHIP BETWEEN TEMPERATURE AND DEVELOPMENT OF THE CARROT WEEVIL, LISTRONOTUS OREGONENSIS (LeCONTE) (COLEOPTERA: CURCULIONIDAE), IN THE LABORATORY

Published online by Cambridge University Press:  31 May 2012

A.B. Stevenson
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0

Abstract

Rates of development of selected stages and complete development of the carrot weevil, Listronotus oregonensis (LeConte), were determined in the laboratory at controlled temperatures ranging from 17.5 to 30°C. Within that range of temperature, rates of development increased with temperature. Fitting the data to a cubic polynomial function provided an excellent description of the relationship between temperature and rate of development for all stages as shown by R2 values of at least 0.98.

Résumé

Les taux de développement de stades choisis et de développement complet du charançon de la carotte, Listronotus oregonensis (LeConte), ont été établis en laboratoire, à des températures contrôlées variant de 17,5 à 30°C. Les travaux ont révélé que ces taux augmentaient avec la température. Le traitement des données selon une fonction polynomial de 3e degré offrait une excellente description de la relation entre la température et le taux de développement pour tous les stades, comme le montrent les valeurs du carré du coefficient de corrélation linéaire, qui s’établissaient à au moins 0,98.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cress, D., and Wells, A.. 1977. Celery and carrot insect pests. Mich. State Univ. Ext. Bull. E.970. 2 pp.Google Scholar
Harcourt, D.G., and Yee, J.M.. 1982. Polynomial algorithm for predicting the duration of insect life stages. Environ. Ent. 11: 581584.CrossRefGoogle Scholar
Harcourt, D.G., Yee, J.M., and Guppy, J.C.. 1983. Two models for predicting the seasonal occurrence of Agromyza frontella (Diptera: Agromyzidae) in Eastern Ontario. Environ. Ent. 12: 14551458.CrossRefGoogle Scholar
Martel, P., Svec, H.J., and Harris, C.R.. 1976. The life history of the carrot weevil, Listronotus oregonensis (Coleoptera: Curculionidae) under controlled conditions. Can. Ent. 108: 931934.CrossRefGoogle Scholar
Pepper, B.B. 1942. The carrot weevil, Listronotus latiusculus (Bobe), in New Jersey and its control. Bull. N.J. Agric. Exp. Sta. 693. 20 pp.Google Scholar
Roberts, M.D., and Stevenson, A.B.. 1974. Carrot weevil: a laboratory-rearing method. J. econ. Ent. 67: 140.CrossRefGoogle Scholar
Simonet, D.E., and Davenport, B.L.. 1981. Temperature requirements for development and oviposition of the carrot weevil. Ann. ent. Soc. Am. 74: 312315.CrossRefGoogle Scholar
Stevenson, A.B. 1976. Seasonal history of the carrot weevil, Listronotus oregonensis (Coleoptera: Curculionidae) in the Holland Marsh, Ontario. Proc. ent. Soc. Ont. 107: 7178.Google Scholar
Trimble, R.M. 1983. Diapause termination and the thermal requirement for postdiapause development in six Ontario populations of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae). Can. Ent. 115: 387392.CrossRefGoogle Scholar
Whitcomb, W.D. 1965. The carrot weevil in Massachusetts. Bull. Univ. Mass. Agric. Exp. Sta. 550. 30 pp.Google Scholar
Wright, J.M., and Decker, G.C.. 1958. Laboratory studies of the life cycle of the carrot weevil. J. econ. Ent. 51: 3739.CrossRefGoogle Scholar