Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T05:46:06.187Z Has data issue: false hasContentIssue false

REPRODUCTION AND DEVELOPMENTAL PHENOLOGY OF IPS PERTURBATUS (COLEOPTERA: SCOLYTIDAE) INHABITING WHITE SPRUCE (PINACEAE)

Published online by Cambridge University Press:  31 May 2012

Ian C. Robertson
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

Three white spruces, Picea glauca (Moench) Voss (30–35 cm diameter at breast height), felled in central Alberta, were colonized by Ips perturbatus (Eichhoff) beginning in late May 1999. The mean (±SE) density of breeding galleries on the trees was 217 ± 23/m2 (n = 30). Harem size ranged from one to four females per gallery, with a mean of 2.1 ± 0.6 (n = 90). Tunnel excavation and oviposition occurred primarily during the first 3 weeks after gallery initiation. Individual females laid 48.9 ± 2.5 eggs (n = 30) in galleries that reached 10.0 ± 0.3 cm in length (n = 45). Males assisted their mates by removing frass and woody debris from the tunnels. Males remained in their galleries for at least 1 week, although there was gradual attrition such that < 15% of males remained after 6 weeks. Large males abandoned their galleries sooner than small males. In contrast, females were present in almost half of the oviposition tunnels examined after 6 weeks, and there was no significant relationship between female size and residence time. Mortality from egg to adult was high (98%) during this 1-year study, likely a result of the intense crowding of galleries. Adult offspring were found beneath the bark in mid-July, although the main emergence did not begin until mid-September. Because such late emergence would be too late for these individuals to reproduce before winter, I conclude that I. perturbatus has only one generation per year in central Alberta.

Résumé

Cette étude détaille la biologie reproductrice et la phénologie du Scolyte de l’épinette, Ips perturbatus (Eichhoff), sur l’épinette blanche, Picea glauca (Moench) Voss, dans le centre de l’Alberta. La colonisation par I. perturbatus des épinettes abattues (30–35 cm diamètre à hauteur poitrine) a débuté à la fin mai 1999. La densité moyenne (±ES) des galleries d’accouplement sur l’arbre était de 217 ± 23/m2 (n = 30). La taille des harems s’étendait d’une à quatre femelles par gallerie, avec une moyenne de 2,1 ± 0,6 (n = 90). L’excavation du tunnel et la ponte se sont principalement déroulées pendant les trois premières semaines après l’initiation des galleries. En moyenne, les femelles ont pondu 48,9 ± 2,5 oeufs (n = 30) dans des tunnels atteignants 10,0 ± 0,3 cm en longueur (n = 45). Les mâles ont assisté leurs femelles en enlevant les excréments et les débris ligneux des tunnels. Bien que les mâles sont restés dans leurs galleries pour au moins 1 semaine, une attrition générale a résulté en la présence de moins de 15% de ces mâles dans leurs galleries après 6 semaines. Les plus gros mâles ont abandonné leurs galleries plus tôt que les petits mâles. En revanche, les femelles étaient présentes dans près de la moitié des tunnels de ponte examinés après 6 semaines. Il n’y avait pas de relation entre la taille de la femelle et son temps de résidence. La mortalité d’oeuf à adulte était élevée (98%), possiblement dû à l’encombrement intense des galleries par les scolytes. Bien que des rejetons adultes ont été trouvés sous l’écorce à la mi-juillet, ils n’ont pas commencé à émerger avant la mi-septembre, date trop tardive pour qu’ils se reproduisent avant l’hiver. Donc, I. perturbatus n’a qu’une génération par année dans le centre de l’Alberta.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderbrant, O., Löfqvist, J. 1988. Relation between first and second brood production in the bark beetle Ips typographus (Scolytidae). Oikos 53: 357–65CrossRefGoogle Scholar
Botterweg, P.F. 1982. Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Zeitschrift für Angewandt Entomologie 94: 466–89CrossRefGoogle Scholar
Bright, D.E. 1976. The insects and arachnids of Canada, part 2: the bark beetles of Canada and Alaska (Coleoptera: Scolytidae). Agriculture Canada Publication 1576Google Scholar
Buchner, A., Faul, F., Erdfelder, E. 1992. GPOWER: a prior-, posthoc-, and compromise power analyses for the Macintosh. Bonn: Bonn UniversityGoogle Scholar
Cohen, J. 1988. Statistical power analysis for the behavioral sciences. 2nded. Hillsdale: ErlbaumGoogle Scholar
Gobeil, A.R. 1936. The biology of Ips perturbatus Eichhoff. Canadian Journal of Research 14: 181204CrossRefGoogle Scholar
Holsten, E.H. 1986. Preliminary evaluation of an Ips perturbatus outbreak in the Bonanza Creek Experimental Forest, Fairbanks, Alaska. USDA Forest Service, Alaska Region Biological Evaluation R10-86-1Google Scholar
Holsten, E.H. 1996. Ips tridens: a pest of managed stands?? USDA Forest Service, Alaska Region Biological Evaluation R10-TP-71Google Scholar
Holsten, E.H. 1998. Ips perturbatus: a pest of managed stands?? USDA Forest Service, Alaska Region Biological Evaluation R10-TP-771Google Scholar
Holsten, E.H., Werner, R.A. 1987. Engraver beetles in Alaskan forests. USDA Forest Service Pacific Northwest Research Station PNW Leaflet GPO 795-322Google Scholar
Hopping, G.R. 1965. The North American species in group VI of Ips De Geer (Coleoptera: Scolytidae). The Canadian Entomologist 97: 533–41CrossRefGoogle Scholar
Ives, W.G.H., Wong, H.R. 1988. Tree and shrub insects of the Prairie Provinces. Vancouver: UBC PressGoogle Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera; Scolytidae and Platypodidae). Zoological Journal of the Linnean Society 77: 293352CrossRefGoogle Scholar
Kirkendall, L.R., Kent, D.S., Raffa, K.F. 1997. Interactions among males, females and offspring in bark beetles: the significance of living in tunnels for the evolution of social behavior. pp. 181215in Choe, J.C., Crespi, B.J. (Eds.), The evolution of social behavior in insects and arachnids. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Lanier, G.N., Cameron, E.A. 1969. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). The Canadian Entomologist 101: 862–70CrossRefGoogle Scholar
Reid, M.L. 1999. Monogamy in the bark beetle Ips latidens: ecological correlates of an unusual mating system. Ecological Entomology 24: 8994CrossRefGoogle Scholar
Reid, M.L., Roitberg, B.D. 1994. Benefits of prolonged male residence with mates and brood in pine engravers (Coleoptera: Scolytidae). Oikos 70: 140–8CrossRefGoogle Scholar
Reid, M.L., Roitberg, B.D. 1995. Effects of body size on investment in individual broods by male pine engravers (Coleoptera: Scolytidae). Canadian Journal of Zoology 73: 13961401CrossRefGoogle Scholar
Robertson, I.C. 1998. Paternal care enhances male reproductive success in pine engraver beetles. Animal Behaviour 56: 595602CrossRefGoogle ScholarPubMed
Robertson, I.C., Roitberg, B.D. 1998. Duration of paternal care in pine engraver beetles: why do larger males care less? Behavioral Ecology & Sociobiology 43: 379–86CrossRefGoogle Scholar
Robins, G.L., Reid, M.L. 1997. Effects of density on the reproductive success of pine engravers: is aggregation in dead trees beneficial? Ecological Entomology 22: 329–34CrossRefGoogle Scholar
Trivers, R.L. 1972. Parental investment and sexual selection. pp. 136–79 in Campbell, B. (Ed.), Sexual selection and the decent of man, 1871–1971. Chicago: AldineGoogle Scholar
Watson, E.B. 1927. Notes on the hibernation of the spruce bark-beetle, Ips perturbatus Eichh., in northern Ontario. The Canadian Entomologist LIX: 120–1CrossRefGoogle Scholar
Werner, R.A. 1988. Recommendations for suppression of an Ips perturbatus outbreak in interior Alaska using integrated control. pp. 189–95 in Payne, T.L., Saarenmaa, H. (Eds.), Integrated Control of Scolytid Bark Beetles, Proceedings of the IUFRO Working Party and 17th International Congress of Entomology Symposium, VancouverGoogle Scholar
Wilkinson, L., Hill, M., Vang, E. 1992. SYSTAT: statistics, version 5.2. Evanston: SYSTATGoogle Scholar