Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T18:02:56.771Z Has data issue: false hasContentIssue false

RESIDUAL ACTIVITY OF ORGANOPHOSPHORUS AND PYRETHROID INSECTICIDES APPLIED TO WHEAT STORED UNDER SIMULATED WESTERN CANADIAN CONDITIONS1

Published online by Cambridge University Press:  31 May 2012

N. D. G. White
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9

Abstract

Wheat treated with 2,4, or 8 ppm of insecticide, on a whole-seed basis, was bioassayed with Tribolium castaneum (Herbst) and Cryptolestes ferrugineus (Stephens) adults at 30 °C and 70% RH after 4 days, 2 weeks, and then at eleven 1-month intervals. Malathion was more toxic to C. ferrugineus than to T. castaneum whereas the reverse was true for pirimiphos-methyl; malathion showed little effectiveness after 2 weeks. The pyrethroids, cypermethrin and permethrin, were more toxic to T. castaneum than to C. ferrugineus. For malathion and pirimiphos-methyl, percentage knockdown of the insects following exposure for 24 h was similar to percentage mortality after a 3-day recovery period; for cypermethrin and permethrin under the same conditions, knockdown was consistently greater than mortality. Cypermethrin at 8 ppm on wheat gave 90% knockdown of T. castaneum after 1 year of storage. Pirimiphos-methyl gave nearly 100% control of both species for 9 months at 4 ppm and 11 months at 8 ppm, and of the grain mite Acarus siro (L.) for at least 4 weeks at 8 ppm. Seed germination did not change during 1 year of storage; the levels of Penicillium spp. infection observed were much greater (about 60%) on wheat treated with pirimiphos-methyl (2, 4, 8 ppm) or cypermethrin (2 ppm) than with malathion or permethrin.

Résumé

Dans le cadre d'essais biologiques, on a mis en présence du blé traité avec 2, 4 ou 8 ppm d'insecticide (chaque graine étant pulvérisée individuellement) et des Tribolium castaneum (Herbst) et des Cryptolestes ferrugineus (Stephens) adultes à 30 °C et à 70% HR, après 4 jours, 2 semaines et puis à 11 intervalles d'un mois chacun. Le malathion était plus toxique pour C. ferrugineus que pour T. castaneum, alors que l'inverse était vrai dans le cas du pirimiphos-méthyl; le malathion était peu efficace après 2 semaines. Les pyréthroïdes, cyperméthrine et perméthrine, étaient plus toxiques pour T. castaneum que pour C. ferrugineus. Le pourcentage de paralysie des insectes après une exposition de 24 heures au malathion et au pirimiphos-méthyl était semblable au pourcentage de mortalité après une période de récupération de 3 jours; dans les mêmes conditions, la paralysie causée par la cyperméthrine et la perméthrine était constamment supérieure à la mortalité. La pulvérisation de 8 ppm de cyperméthrine sur le blé a entraîné la paralysie de 90% des T. castaneum après un an d'entreposage. Le pirimiphos-méthyl a éliminé près de 100% des deux espèces à une concentration de 4 ppm pendant 9 mois et à 8 ppm pendant 11 mois, et du ciron de la farine, Acarus siro (L.), pendant au moins 4 semaines à une concentration de 8 ppm. Il n'y a pas eu de changement dans la germination des semences pendant 1 an; la gravité de l'infection par Penicillium sp. était nettement supérieure (environ 60%) chez le blé traité avec le pirimiphos-méthyl (2, 4, 8 ppm) ou avec la cyperméthrine (2 ppm) qu'avec le malathion ou la perméthrine.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Adesuyi, S. A. 1982. Field trials with permethrin dust for the control of insect infestation on stored maize in southern Nigeria. J. stored Prod. Res. 18: 125130.CrossRefGoogle Scholar
Anderegg, B. N. and Madisen, L. J.. 1983. Degradation of 14C-Malathion in stored corn and wheat inoculated with Aspergillus glaucus. J. econ. Ent. 76: 733736.CrossRefGoogle Scholar
Anonymous. 1975. Moisture measurement – Grain and seeds. ASAE Method No. S352. Agricultural Engineers' Yearbook, Am. Soc. agric. Engng, St. Joseph, Mich.690 pp.Google Scholar
Anonymous. 1980. Mites in stored commodities. Min. Agric. Fish. Food, Leafl. 489. Lion House, Alnwick, Northumberland, England. 6 pp.Google Scholar
Anonymous. 1982 a. Compendium of Pest Control Products Registered in Canada. Control of arthropods and molluscs. Agric. Can. Publ. 1654. RP/82.Google Scholar
Anonymous. 1982 b. Farm Chemicals Handbook. Meister, Willoughby, Ohio. 572 pp.Google Scholar
Champ, B. R. and Dyte, C. E.. 1976. Report of the FAO Global Survey of Pesticide Susceptibility of Stored Grain Pests. FAO plant Prod. and Prot. Ser. 5. 297 pp.Google Scholar
Elliott, M., Jones, N. F., and Potter, C.. 1978. The future of pyrethroids in insect control. A. Rev. Ent. 23: 443469.CrossRefGoogle Scholar
Golob, P. and Ashman, F.. 1974. The effect of oil content and insecticides on insects attacking rice bran. J. stored Prod. Res. 10: 93103.CrossRefGoogle Scholar
Harris, C. R. and Kinoshita, G. R.. 1977. Influence of post treatment temperature on the toxicity of pyrethroid insecticides. J. econ. Ent. 70: 215218.CrossRefGoogle Scholar
Joia, B. S. 1983. Insecticidal efficacy and residues of cypermethrin and fenvalerate in stored wheat. Ph.D. Dissertation, Univ. Manitoba. 93 pp.Google Scholar
Mensah, G. W. K. and Watters, F. L.. 1979. Comparison of four organophosphorus insecticides on stored wheat for control of susceptible and malathion-resistant strains of the red flour beetle. J. econ. Ent. 72: 456461.CrossRefGoogle Scholar
Mills, J. T., Sinha, R. N., and Wallace, H. A. H.. 1978. Multivariate evaluation of isolation techniques for fungi associated with stored rapeseed. Phytopatholog 68: 15201525.CrossRefGoogle Scholar
Muir, W. E. 1970. Temperature in grain bins. Can. Agric. Engn 12: 2124.Google Scholar
Redlinger, L. M. 1976. Pirimiphos-methyl as a protectant for farmers' stock peanuts. J. econ. Ent. 69: 377379.CrossRefGoogle Scholar
Rowlands, D. G. 1975. The metabolism of contact insecticides in stored grains. III. 1970–1974. Residue Rev. 58: 113155.Google Scholar
Rowlands, D. G. and Clements, J. E.. 1965. The degradation of malathion in rice brans. J. stored Prod. Res. 1: 101103.CrossRefGoogle Scholar
Sinha, R. N. 1961. Insects and mites associated with hot spots in farm stored grain. Can. Ent. 93: 609621.CrossRefGoogle Scholar
Sinha, R. N. 1971. Spoilage of farm-stored grain by molds, insects and mites in western Canada. Agric. Can. Publ. 1437. 8 pp.Google Scholar
Wallace, H. A. H. and Sinha, R. N.. 1962. Fungi associated with hot spots in farm-stored grain. Can. J. Pl. Sci. 42: 130141.CrossRefGoogle Scholar
Watters, F. L. 1959. Effect of grain moisture content on residual toxicity and repellency of malathion. J. econ. Ent. 52: 131134.CrossRefGoogle Scholar
Watters, F. L., White, N. D. G., and Coté, D.. 1983. Effect of temperature on the toxicity and persistence of three pyrethroid insecticides applied to fir plywood for control of Tribolium castaneum. J. econ. Ent. 76: 1116.CrossRefGoogle Scholar
White, N. D. G. and Watters, F. L.. Incidence of malathion resistance in Tribolium castaneum and Cryptolestes ferrugineus populations collected in Canada. Proc. 3rd int. Work. Conf. Stored Prod. Ent., Manhattan, Kansas. In press.Google Scholar