Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:37:45.641Z Has data issue: false hasContentIssue false

THE RESPONSE OF FLAX TO DIFFERENT POPULATION DENSITIES OF THE RED-BACKED CUTWORM, EUXOA OCHROGASTER (GN.) (LEPIDOPTERA: NOCTUIDAE)1

Published online by Cambridge University Press:  31 May 2012

G.L. Ayre
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Controlled field studies carried out in plots within a field of NorMan flax, Linum usitatissum L., showed that the loss of flax plants caused by the red-backed cutworm was proportional to the number of cutworm larvae present. A density of 16 larvae per 0.5 m2 destroyed most plants by severing the plant stems at the soil surface. The loss of only some plants at larval densities lower than 16 larvae per 0.5 m2 resulted in a small but significant increase in per plant yield but the increase did not completely compensate for the yield reductions caused by plant loss. The larvae removed plants in blocks with the result that the density of the remaining plants was unchanged and the opportunity for compensating plant growth was limited. An equation defining this relationship between larval densities and yield is presented. Ancillary experiments in which the population of cutworm larvae was sequentially sampled showed that, after an initial loss of about 20% when the plots were established in the field, the larval population remained constant. The proportion of the larvae found around damaged plants also remained constant until the larvae became immobile through preparation for pupation. Because of this stable relationship, reliable estimates of potential crop loss from cutworm larvae in flax should be possible by sampling for cutworms only around damaged plants within a specified row length.

Résumé

Des essais contrôlés en parcelles d’essais dans un champ de lin NorMan (Linum usitatissum L.) ont révélé que la perte de plants de lin causée par le ver-gris à dos rouge était proportionnelle au nombre de larves de ver-gris. Une densité de 16 larves par 0,5 m2 détruit la plupart des plants en sectionnant les tiges au niveau du sol. La perte de quelques plants seulement à des densités inférieures à 16 larves par 0,5 m2 entraîne une légère augmentation, quoique significative, du rendement par plant, mais celle-ci ne compense pas pleinement les baisses de rendement causées par la perte des plants. Les larves éliminent les plants par blocs avec le résultat que la densité des plants restants demeure inchangée et que la possibilité de compenser la croissance végétale est plutôt restreinte. L’auteur présente une équation établissant ce rapport entre la densité des larves et le rendement. Des expériences complémentaires dans lesquelles la population de larves est échantillonnée en série révèlent que la population larvaire demeure constante après une perte initiale d’environ 20% due à l’établissement des parcelles dans le champ. La proportion de larves rencontrées autour de plants endommagés demeure aussi constante jusqu’à ce que les larves s’immobilisent pour se préparer à la pupaison. Grâce à la stabilité de ce rapport, on devrait pouvoir estimer fidèlement la perte de récolte potentielle aux larves du vers-gris à dos rouge dans le lin en n’échantillonnant les larves qu’autour des plants endommagés sur une longueur de ligne donnée.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, C.G. 1976. A quantitative study of consumption and utilization of various diets in the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can. Ent. 108: 13191326.Google Scholar
Beirne, B.P. 1971. Pest insects of annual crops in Canada. Part I. Lepidoptera; II. Diptera; III. Coleoptera. Mem. ent. Soc. Can. 78. 124 pp.Google Scholar
Cheng, H.H. 1973. Observations on the bionomics of the dark-sided cutworm Euxoa messoria (Lepidoptera: Noctuidae), in Ontario. Can. Ent. 105: 311322.CrossRefGoogle Scholar
Dillman, A.C., and Brinsmade, J.C.. 1938. Effect of spacing on the development of the flax plant. J. Am. Soc. Agron. 30: 267278.Google Scholar
Klages, K.H. 1932. Spacing in relation to the development of the flax plant. J. Am. Soc. Agron. 24: 117.Google Scholar
Manitoba Agriculture. 1985. Field crop recommendations for Manitoba. Man. Agric., Winnipeg, Man., Canada. 97 pp.Google Scholar
Mukerji, M.K., and Guppy, J.C.. 1970. A quantitative study of food consumption and growth in Pseudaletia unipuncta (Lepidoptera: Noctuidae). Can. Ent. 102: 11791188.Google Scholar
SAS Institute Inc. 1985. SAS User's Guide: Statistics, 5th ed. SAS Inst. Inc., Cary, NC, USA. 956 pp.Google Scholar
Singh, P., and Moore, R.F.. 1985. Handbook of Insect Rearing. Vol. 1. Elsevier Science Publishers, The Netherlands. 488 pp.Google Scholar
University of Manitoba, Department of Plant Science. 1987. Manitoba crop variety trials 1983–1987. University of Manitoba, Winnipeg, Man., Canada. 97 pp.Google Scholar