Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:50:39.572Z Has data issue: false hasContentIssue false

THE ROLE OF FUNGI VECTORED BY DENDROCTONUS BREVICOMIS LECONTE (COLEOPTERA: SCOLYTIDAE) IN OCCLUSION OF PONDEROSA PINE XYLEM

Published online by Cambridge University Press:  31 May 2012

K.R. Hobson
Affiliation:
Department of Entomological Sciences, University of California, Berkeley, California, USA 94720
J.R. Parmeter Jr.
Affiliation:
Department of Plant Pathology, University of Califomia, Berkeley, California, USA 94720
D.L. Wood
Affiliation:
Department of Entomological Sciences, University of California, Berkeley, California, USA 94720

Abstract

Following attack by Dendroctonus brevicomis LeConte, ponderosa pines were periodically sampled over 7 weeks. Xylem water conduction was assessed using a dye flow technique. Fungal isolations were made from functioning and occluded xylem. Neither Ophiostoma nigrocarpum (Davids.) de Hoog or other bluestain fungi were commonly found at the interface of the occluded and functioning xylem. Instead, blue-stain fungi appear to colonize already occluded xylem, not cause xylem occlusion by direct hyphal penetration of functioning sapwood. No evidence for a mutualistic association of D. brevicomis and its vectored bluestain fungi was found.

Résumé

Des Pins à bois lourd ont été échantillonnés périodiquement durant 7 semaines après une invasion de Dendroctonus brevicomis LeConte. La conduction de l’eau du xylème a été mesurée au moyen d’une technique d’injection de colorant. Les champignons ont été isolés dans du xylème en circulation et dans des canaux de xylème bouchés. Nous n’avons trouvé aucun Ophiostoma nigrocarpum (Davids.) de Hoog, ni aucun autre champignon bleuissant à l’interface du xylème stoppé et du xylème en circulation. Il semble plutôt que les champignons bleuissants colonisent le xylème déjà stoppé et ne causent pas directement l’occlusion par pénétration des hyphes dans le xylème en circulation. Aucun indice de mutualisme entre D. brevicomis et les champignons bleuissants qu’il transmet n’a été constaté.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaver, R.A. 1989. Insect–fungus relationships in the bark and ambrosia beetles. pp. 121–143 in Wilding, N., Collins, J.M., Hammond, P.M., and Webber, J.F. (Eds.), Insect–Fungus Interactions. Academic Press, London. 344 pp.Google Scholar
Bridges, J.R., Nettleton, W.A., and Connor, M.D.. 1985. Southern pine beetle (Coleoptera: Scolytidae) infestations without the blue-stain fungus, Ceratocystis minor. Journal of Economic Entomology 78: 325327.CrossRefGoogle Scholar
Caird, R.W. 1935. Physiology of pines infested with bark beetles. Botanical Gazette 96: 709733.CrossRefGoogle Scholar
Christiansen, E. 1985. Ips/Ceratocystis-infection of Norway spruce: What is a deadly dosage? Zeitschrift fur Angewandte Entomologie 99: 611.CrossRefGoogle Scholar
Coutts, M.P. 1977. The formation of dry zones in the sapwood of conifers. II. The role of living cells in the release of water. European Journal Forest Pathology 7: 612.CrossRefGoogle Scholar
Francke-Grosmann, H. 1967. Ectosymbiosis in wood-inhabiting insects. pp. 141–205 in Henry, S.M. (Ed.), Symbiosis Vol. II. Academic Press, New York, NY. 443 pp.Google Scholar
Harrington, T.C. 1993 a. Biology and taxonomy of fungi associated with bark beetles. pp. 37–58 in Schowalter, T.D., and Filip, G.M. (Eds.), Beetle–Pathogen Interactions in Conifer Forests. Academic Press, New York, NY. 252 pp.Google Scholar
Harrington, T.C. 1993 b. Plant diseases caused by Ophiostoma and Leptographium. pp. 162–172 in Wingfield, M.J., Seifert, K.A., and Webber, J.F. (Eds.), Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathology. APS Press, St. Paul, MN.Google Scholar
Hetrick, L.A. 1949. Some overlooked relationships of southern pine beetle. Journal of Economic Entomology 42: 466469.CrossRefGoogle Scholar
Horntvedt, R.E., Christiansen, E., Soldheim, H., and Wang, S.. 1983. Artificial inoculation with Ips typographus-associated fungi can kill Norway spruce trees. Meddelelser fra det Norsk Institutt for Skogforskning 38: 120.Google Scholar
Kuroda, K. 1991. Mechanism of cavitation development in the pine wilt disease. European Journal of Forest Pathology 21: 6570.CrossRefGoogle Scholar
Lieutier, F., and Berryman, A.A.. 1988. Preliminary histological investigations of the defense reactions of three pines to Ceratocystis clavigera and two chemical elicitors. Canadian Journal of Forest Research 18: 12431247.CrossRefGoogle Scholar
Miller, J.M., and Keen, F.P.. 1960. Biology and control of the Western Pine Beetle. USDA Forest Service Miscellaneous Publication 800: 381 pp.Google Scholar
Munch, E. 1907. Die blaufaule des nadelholzes. Naturwissenschaftliche Zeitschrift fur Land-und Forstwirtschaft 5: 531573.Google Scholar
Owen, D.R., Lindahl, K.Q. Jr., Wood, D.L., and Parmeter, J.R.. 1987. Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis and D. ponderosae to ponderosa pine seedlings. Phytopathology 77: 631636.CrossRefGoogle Scholar
Parmeter, J.R. Jr., Slaughter, G.W., Chen, M., and Wood, D.L.. 1992. Rate and depth of sapwood occlusion following inoculations of pines with bluestain fungi. Forest Science 38: 3444.Google Scholar
Parmeter, J.R. Jr., Slaughter, G.W., Chen, M., Wood, D.L., and Stubbs, H.A.. 1989. Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology 79: 768772.CrossRefGoogle Scholar
Payne, T.L. 1980. Life history and habits. In Thatcher, R.C., Searcy, J.L., Coster, J.E., and Hertel, G.D. (Eds.), The Southern Pine Beetle. USDA Forest Service Technical Bulletin 1631: 266 pp.Google Scholar
Raffa, K.F., and Berryman, A.A.. 1983. Physiological aspects of lodgepole pine wound response to a fungal symbiont of the mountain pine beetle. The Canadian Entomologist 115: 723734.CrossRefGoogle Scholar
Rudinsky, J.A. 1962. Ecology of Scolytidae. Annual Review of Entomology 7: 327348.CrossRefGoogle Scholar
Stephen, F.M., Berisford, C.W., Dahlsten, D.L., and Moser, J.C.. 1993. Insect and microbial associates. In Schowalter, T.D., and Filip, G.M. (Eds.), Beetle–Pathogen Interactions in Conifer Forests. Academic Press, New York, NY. 252 pp.Google Scholar
Whitney, H.S. 1982. Relationships between bark beetles and symbiotic organisms. pp. 183–212 in Mitton, J.K., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. University of Texas Press, Austin, TX. 527 pp.Google Scholar
Whitney, H.S., and Cobb, F.W. Jr., 1972. Non-staining fungi associated with the bark beetle Dendroctonus brevicomis (Coleoptera: Scolytidae) on Pinus ponderosa. Canadian Journal of Botany 50: 19431945.CrossRefGoogle Scholar
Wood, D.L. 1972. Selection and colonization of ponderosa pine by bark beetles. pp. 110–117 in van Emden, H.F. (Ed.), Insect/Plant Relationships. Blackwell Scientific Publications, Oxford. 215 pp.Google Scholar