Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:08:42.539Z Has data issue: false hasContentIssue false

THE ROLE OF NUTRITION AND TEMPERATURE IN THE OVARIAN DEVELOPMENT OF THE WORKER HONEY BEE (APIS MELLIFERA)

Published online by Cambridge University Press:  31 May 2012

Huarong Lin*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Mark L. Winston
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1 Author to whom all correspondence should be addressed.

Abstract

Queenless, caged, newly emerged worker bees (Apis mellifera L.) were fed honey, 22 and 40% pollen in honey, and 22 and 40% royal jelly in honey for 14 days. Workers fed royal jelly, pollen, and honey had large, medium, and small ovaries, respectively. Royal jelly had higher nutritive value for workers’ ovarian development than did pollen, possibly because royal jelly is predigested by nurse bees and easily used by adult and larval bees. These results suggest that nurse bees could mediate workers’ ovarian development in colonies via trophallactic exchange of royal jelly. Six levels of royal jelly in honey, 0, 20, 40, 60, 80, and 100% (royal jelly without honey), were tested for their effects on workers’ ovarian development and mortality for 10 days. High levels of royal jelly increased ovarian development, but also increased worker mortality. All caged bees treated with 100% royal jelly died within 3 days. When workers were incubated at 20, 27, and 34 °C for 10 days, only bees at 34 °C developed ovaries. These findings suggest that nurse bees functioning as units which digest pollen and produce royal jelly may feed some potentially egg-laying workers in a brood chamber with royal jelly when a queen is lost in a colony. Feeding workers a diet of 50% royal jelly in honey and incubating at 34 °C for 10 days is recommended for tests of ovarian development.

Résumé

Dans des cages, en l’absence de reine, des ouvrières fraîchement émergées de l’Abeille domestique (Apis mellifera L.) ont été nourries de miel, de 22% ou 40% de pollen dans du miel ou de 22% ou 40% de gelée royale dans du miel pendant 14 jours. Les ouvrières nourries de gelée royale avaient de gros ovaires, celles nourries de pollen avaient des ovaires moyens et les abeilles nourries de miel avaient de petits ovaires. La gelée royale a une valeur nutritive supérieure à celle du pollen et favorise davantage le développement ovarien, probablement parce qu’elle est prédigérée par les abeilles nourricières et facilement utilisable par les adultes et les larves. Ces résultats indiquent que les abeilles nourricières pourraient favoriser le développement ovarien des ouvrières dans les colonies par échange trophallactique de gelée royale. Les effets de six concentrations de gelée royale dans du miel, 0%, 20%, 40%, 60%, 80% et 100% (gelée royale sans miel) sur le développement ovarien et sur la mortalité ont été examinés pendant 10 jours. Les concentrations élevées de gelée royale ont favorisé le développement ovarien, mais ont également augmenté le taux de mortalité chez les ouvrières. Toutes les abeilles nourries de gelée royale pure sont mortes en moins de 3 jours. Parmi les ouvrières gardées à 20 °C, 27 °C et 34 °C pendant 10 jours, seules celles gardées à 34 °C ont eu des ovaires. Ces résultats semblent indiquer que les abeilles nourricières qui servent d’unités de digestion de pollen et de production de gelée royale sont capables de nourrir de gelée royale les futures pondeuses dans une chambre d’incubation lorsqu’il n’y a plus de reine dans la colonie. Un régime alimentaire composé de 50% de gelée royale dans du miel et une température d’incubation de 34 °C pendant 10 jours sont les conditions recommandées au cours de tests sur le développement ovarien.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Conover, W.J. 1980. Practical Nonparametric Statistics. John Wiley & Sons, New York.Google Scholar
Crailsheim, K. 1991. Interadult feeding of jelly in honey bee (Apis mellifera L.) colonies. Journal of Comparative Physiology B 161: 5560.CrossRefGoogle Scholar
Crailsheim, K. 1992. The flow of jelly within a honey bee colony. Journal of Comparative Physiology B 162: 681689.CrossRefGoogle Scholar
Crailsheim, K., and Stolberg, E.. 1989. Influence of diet, age, and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). Journal of Insect Physiology 28: 6168.Google Scholar
Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Buhlmann, G., Brosch, U., Gmeinbauer, R., and Schoffmann, B.. 1992. Pollen consumption and utilization in worker honey bee (Apis mellifera carnica): dependence on individual age and function. Journal of Insect Physiology 38: 409419.CrossRefGoogle Scholar
Gary, N.E. 1992. Activities and behavior of honey bees. pp. 269372in Graham, J.M. (Ed.), The Hive and the Honey Bee. Datant & Sons, Hamilton, IL.Google Scholar
Hagedorn, H.H., and Moeller, F.E.. 1967. The rate of pollen consumption by newly emerged honeybees. Journal of Apicultural Research 6: 159162.CrossRefGoogle Scholar
Harris, J.W., and Harbo, J.R.. 1990. Suppression of ovary development of worker honeybees by association with workers treated with carbon dioxide. Journal of Apicultural Research 29: 187193.CrossRefGoogle Scholar
Herbert, E.W. Jr., 1992. Honey bee nutrition. pp. 197233in Graham, J.M. (Ed.), The Hive and the Honey Bee. Datant & Sons, Hamilton, IL.Google Scholar
Herbert, E.W. Jr., Shimanuki, H., and Caron, D.. 1977. Optimum protein levels required by honey bees (Hymenoptera: Apidae) to initiate and maintain brood rearing. Apidologie 8: 141146.CrossRefGoogle Scholar
Iannuzzi, J. 1990. Royal jelly: mystery food. American Bee Journal 131: 587589.Google Scholar
Iannuzzi, J. 1993. Pollen: food for honey bee and man? American Bee Journal 134: 557563.Google Scholar
Jay, S.C. 1975. Factors influencing ovary development of worker honeybees of European and African origin. Canadian Journal of Zoology 53: 13871390.CrossRefGoogle Scholar
Jay, S.C., and Jay, D.H.. 1993. The effect of kiwifruit (Actinidia deliciosa A Chev) and yellow flowered broom (Cytisus scoparius Link) pollen on the ovary development of worker honey bees (Apis mellifera L). Apidologie 24: 557563.CrossRefGoogle Scholar
Jimenez, D.R., and Gilliam, M.. 1989. Age-related changes in midgut ultrastructure and trypsin activity in the honeybee, Apis mellifera. Apidologie 20: 287303.CrossRefGoogle Scholar
Klungness, L.M., and Peng, Y.S.. 1984. Scanning electron microscope observations of pollen food bolus in the alimentary canal of honey bees (Apis mellifera L.). Canadian Journal of Zoology 62: 13161319.CrossRefGoogle Scholar
Korst, P.J.A.M., and Velthuis, H.H.W.. 1982. The nature of trophallaxis in honeybees. Insectes Sociaux 29: 209221.CrossRefGoogle Scholar
Kropacova, S., and Haslbachova, H.. 1970. The development of ovaries in worker honeybees in queenright colonies examined before and after swarming. Journal of Apicultural Ressearch 9: 6570.CrossRefGoogle Scholar
Moritz, R.F.A. 1994. Nourishment and sociality in honeybees. pp. 345390in Hunt, J.H., and Nalepa, C.A. (Eds.), Nournishment & Evolution in Insect Societies. Westview Press, Oxford.Google Scholar
Moritz, B., and Crailsheim, K.. 1987. Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). Journal of Insect Physiology 33: 923931.CrossRefGoogle Scholar
Page, R.E. Jr., and Erickson, E.H. Jr., 1988. Reproduction by worker honey bees (Apis mellifera L.). Behavioral Ecology and Scociobiology 23: 117126.CrossRefGoogle Scholar
Rabie, A.L., Wells, J.D., and Dent, L.E.. 1983. The nitrogen content of pollen protein. Journal of Apicultural Research 22: 119123.CrossRefGoogle Scholar
Rachinsky, A., and Hartfelder, K.. 1990. Corpora allata activity, a prime regulating element for caste-specific juvenile hormone titre in honey bee larvae (Apis mellifera L.). Journal of Insect Physiology 36: 189194.CrossRefGoogle Scholar
Rachinsky, A., Strambi, C., Strambi, A., and Hartfelder, K.. 1990. Caste and metamorphosis: hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae. General and Comparative Endocrinology 79: 3138.CrossRefGoogle ScholarPubMed
Ratnieks, F.L.W. 1993. Egg-laying, egg-removal, and ovary development by workers in queenright honey bee colonies. Behavioral Ecology and Sociobiology 32: 191198.CrossRefGoogle Scholar
Seeley, T., and Heinrich, B.. 1981. Regulation of temperature in the nests of social insects. pp. 159234in Heinrich, B. (Ed.), Insect Thermoregulation. Wiley-Interscience Publication, New York.Google Scholar
Smith, J.M. 1958. Temperature and egg-laying in Drosophila. Journal of Experimental Biology 35: 832842.CrossRefGoogle Scholar
Snodgrass, R.E. 1956. Anatomy of the Honey Bee. Cornell University Press, Ithaca, NY.Google Scholar
Standifer, L.N., McCaughey, W.F., Todd, F.E., and Kemmer, A.R.. 1960. Relative availability of various proteins to the honey bee. Annals of the Entomological Society of America 53: 618625.CrossRefGoogle Scholar
Szolderits, M.J., and Crailsheim, K.. 1993. A comparison of pollen consumption and digestion in honeybee (Apis mellifera carnica) drones and workers. Journal of Insect Physiology 39: 877881.CrossRefGoogle Scholar
Todd, F.E., and Bretherick, O.. 1942. The composition of pollen. Journal of Economic Entomology 35: 312317.CrossRefGoogle Scholar
Velthuis, H.H.W. 1970. Ovarian development in Apis mellifera honey bees. Entomologia Experimentalis et Applicata 13: 377394.CrossRefGoogle Scholar
Velthuis, H.H.W., Ruttner, F., and Crewe, R.M.. 1990. Differentiation in reproductive physiology and behavior during the development of laying worker honey bees. pp. 231243in Engels, W. (Ed.), Social Insects—An Evolutionary Approach to Castes and Reproduction. Springer–Verlag, Berlin.Google Scholar
Verheijen-Voogd, C. 1959. How worker bees perceive the presence of their queen. Zeitschrift fuer Vergleichende Physiologie 41: 527582.CrossRefGoogle Scholar
Visscher, P.K. 1989. A quantitative study of worker reproduction in honey bee colony. Behavioral Ecology and Sociobiology 25: 247254.CrossRefGoogle Scholar
Weaver, N., and Kuiken, K.A.. 1951. Quantitative analysis of the essential amino acids of royal jelly and some pollen. Journal of Economic Entomology 44: 635638.CrossRefGoogle Scholar
Webster, T.C., and Williams, K.R.. 1993. Royal Jelly removal from honey bee (Apis mellifera) queen cells. Annual meeting of the Entomological Society of America DSP1055.Google Scholar
Wheeler, D. 1996. The role of nourishment in oogenesis. Annual Review of Entomology 41: 407431.CrossRefGoogle ScholarPubMed
Wigglesworth, V.B. 1972. The Principles of Insect Physiology. Halsted Press, New York.CrossRefGoogle Scholar
Willis, L.G., Winston, M.L., and Slessor, K.N.. 1990. Queen honey bee mandibular pheromones does not affect worker ovary development. The Canadian Entomologist 122: 10931099.CrossRefGoogle Scholar
Winston, M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA.Google Scholar