Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T23:42:01.674Z Has data issue: false hasContentIssue false

The Role of Nutritional Principles in Biological Control1

Published online by Cambridge University Press:  31 May 2012

H. L. House
Affiliation:
Research Institute, Research Branch, Canada Department of Agriculture, Belleville, Ontario

Abstract

The role that nutrition plays in biological control may be seen in natural environments; but to understand and to make use of this role the principles concerned must be understood essentially in terms of specific chemical substances. A number of principles of insect nutrition particularly relevant to biological control concern the food of the host, the host itself, and its parasitoid. These principles may be generalized into three laws and they are called here the rule of sameness, the principle of nutrient proportionality, and the principle of cooperating supplements. Each is discussed in connection with its application in the laboratory or in natural environments, and a few examples of work relating to each are given. Most examples quoted are from work at Belleville, Ontario, on the parasitoid Pseudosarcophaga affinis Auct. nec. Fallén.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albritton, E. C. 1954. Editor. Standard values in nutrition and metabolism. W. B. Saunders, Philadelphia.Google Scholar
Arthur, A. P., and Coppel, H. C.. 1953. Studies on dipterous parasites of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). I. Sarcophaga aldrichi Parker (Diptera: Sarcophagidae). Can. J. Zool. 31: 374391.CrossRefGoogle Scholar
Atwal, A. S., and Sethi, S. L.. 1963. Biochemical basis for the food preference of a predator beetle. Current Sci. (India) 11: 511512.Google Scholar
Auclair, J. L. 1963. Aphid feeding and nutrition. A. Rev. Ent. 8: 439490.CrossRefGoogle Scholar
Auclair, J. L., Maltais, J. B. and Cartier, J. J.. 1957. Factors in resistance of peas to the pea aphid, Acyrthosiphon pisum (Harr.). II. Amino acids. Can. Ent. 89: 457464.CrossRefGoogle Scholar
Barlow, J. S. 1962. Pyridoxine requirements of Agria affinis (Fall.) Nature, Lond. 196: 193194.CrossRefGoogle Scholar
Barlow, J. S. 1964. Fatty acids in some insect and spider fats. Can. J. Biochem. 42: 13651374.CrossRefGoogle ScholarPubMed
Barlow, J. S. 1965. Effects of diet on the composition of body fat in Agria affinis (Fallén). Can. J. Zool. 43:337340.CrossRefGoogle Scholar
Barlow, J. S., and House, H. L.. 1960. Effects of dietary glucose on hemolymph carbohydrates of Agria affinis (Fall.) J. Insect Physiol. 5: 181189.CrossRefGoogle Scholar
Beck, S. D. 1956. The European corn borer, Pyrausta nubilalis (Hbn.), and its principal host plant. I. Orientation and feeding behavior of the larva on the corn plant. Ann. ent. Soc. Amer. 49: 552558.CrossRefGoogle Scholar
Beck, S. D. 1957. The European corn borer, Pyrausta nubilalis (Hbn.), and its principal host plant. IV. Larval saccharotrophism and host plant resistance. Ann. ent. Soc. Amer. 50: 247250.CrossRefGoogle Scholar
Beck, S. D. 1965. Resistance of plants to insects. A. Rev. Ent. 10: 207232.CrossRefGoogle Scholar
Beirne, B. P. 1962. Trends in applied biological control of insects. A. Rev. Ent. 7: 387400.CrossRefGoogle ScholarPubMed
Berger, R. S. 1963. Laboratory techniques for rearing Heliothis species on artificial medium. U.S. Dep. Agric. ARS-33-84.Google Scholar
Block, R. J., and Weiss, K. W.. 1956. Amino acid handbook. Charles C. Thomas, Springfield.Google Scholar
Boehm, G. A. W. 1965. Aquaculture. In: Britannica book of the year 1965. Encyclopaedia Britannica, Chicago.Google Scholar
Bracken, G. K. 1965a. Effects of dietary components on fecundity of the parasitoid Exeristes comstockii (Cress.) (Hymenoptera: Ichneumonidae). Can. Ent. 97: 10371041.CrossRefGoogle Scholar
Bracken, G. K. 1965b. Research Institute, Canada Department of Agriculture, Belleville, Ontario. Personal communication.Google Scholar
Bracken, G. K. 1966. Role of ten dietary vitamins on fecundity of the parasitoid Exeristes comstockii (Cresson) (Hymenoptera: Ichneumonidae). Can. Ent. 98: 918922.CrossRefGoogle Scholar
Bronskill, J. F., and House, H. L.. 1957. Notes on rearing a pupal endoparasite, Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae), on unnatural food. Can. Ent. 89: 483.CrossRefGoogle Scholar
Burnet, B., and Sang, J. H.. 1963. Dietary utilization of DNA and its derivatives by Drosophila melanogaster (Meig.). J. Insect Physiol. 9: 553562.CrossRefGoogle Scholar
Chun-Teh, Chin. 1950. Studies on the physiological relations between the larvae of Leptinotarsa decemlineata Say and some solanaceous plants. H. Veenman and Zonen, Wageningen.Google Scholar
Chippendale, G. M., and Beck, S. D.. 1965. A method for rearing the cabbage looper, Trichoplusia ni, on a meridic diet. J. econ. Ent. 58: 377378.CrossRefGoogle Scholar
Chumakova, B. M. 1962. Significance of individual food components for the vital activity of mature predatory and parasitic insects. Vop. Ekol. Kievak. 8: 133134 (Biol. Abstr. 45, 44502, 1964).Google Scholar
Coppel, H. C., House, H. L. and Maw, M. G.. 1959. Studies on dipterous parasites of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). VII. Agria affinis (Fall.) (Diptera: Sarcophagidae). Can. J. Zool. 37: 817830.CrossRefGoogle Scholar
Dalton, D. C. 1963. Effect of dilution of the diet with an indigestible filler on feed intake in the mouse. Nature, Lond. 197: 909910.CrossRefGoogle ScholarPubMed
De Groot, A. P. 1953. Protein and amino acid requirements of the honeybee (Apis mellifica L.). W. Junk, The Hague.Google Scholar
Dethier, V. G. 1954. Evolution of feeding preferences in phytophagous insects. Evolution, Lancaster, Pa. 8: 3354.CrossRefGoogle Scholar
Fraenkel, G. 1959. A historical and comparative survey of the dietary requirements of insects. Ann. N.Y. Acad. Sci. 77: 267274.CrossRefGoogle Scholar
Friend, W. G., Backs, R. H. and Cass, L. M.. 1957. Studies on amino acid requirements of larvae of the onion maggot, Hylemya antiqua (Mg.), under aseptic conditions. Can. J. Zool. 35: 535543.CrossRefGoogle Scholar
Friend, W. G., Salkeld, E. H. and Stevenson, I. L.. 1959. Nutrition of onion maggots, larvae of Hylemya antiqua (Meig.), with reference to other members of the genus Hylemya. Ann. N.Y. Acad. Sci. 77: 384393.CrossRefGoogle Scholar
Gordon, H. T. 1959. Minimal nutritional requirements of the German roach, Blattella germanica L. Ann. N.Y. Acad. Sci. 77: 290351.CrossRefGoogle Scholar
Gordon, H. T. 1961. Nutritional factors in insect resistance to chemicals. A. Rev. Ent. 6: 2754.CrossRefGoogle Scholar
Heed, W. B., and Kircher, H. W.. 1965. Unique sterol in the ecology and nutrition of Drosophila pachea. Science, N.Y. 149: 758761.CrossRefGoogle ScholarPubMed
House, H. L. 1951. Notes on the laboratory propagation of Pseudosarcophaga affinis (Fall.), a sarcophagid parasite of the spruce budworm, Choristoneura fumiferana (Clem.). Rep. Queb. Soc. Prot. Pl., 31st (1948–49), 134137.Google Scholar
House, H. L. 1954a. Nutritional studies with Pseudosarcophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). II. Effects of eleven vitamins on growth. Can. J. Zool. 32: 342350.CrossRefGoogle Scholar
House, H. L. 1954b. Nutritional studies with Pseudosarcophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). III. Effects of nineteen amino acids on growth. Can. J. Zool. 32: 351357.CrossRefGoogle Scholar
House, H. L. 1954c. Nutritional studies with Pseudosarcophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). IV. Effects of ribonucleic acid, glutathione, dextrose, a salt mixture, cholesterol, and fats. Can. J. Zool. 32: 358365.CrossRefGoogle Scholar
House, H. L. 1958a. Nutritional requirements of insects associated with animal parasitism. Expl Parasit. 7: 555609.CrossRefGoogle ScholarPubMed
House, H. L. 1958b. The nutrition of insects with particular reference to entomophagous parasites. Proc. 10th int. Congr. Ent., Montreal 1956, 2: 139143.Google Scholar
House, H. L. 1959. Nutrition of the parasitoid Pseudosarcophaga affinis (Fall.) and of other insects. Ann. N.Y. Acad. Sci. 77: 394405.CrossRefGoogle Scholar
House, H. L. 1961. Insect nutrition. A. Rev. Ent. 6: 1326.CrossRefGoogle Scholar
House, H. L. 1962. Insect nutrition. A. Rev. Biochem. 31: 653672.CrossRefGoogle ScholarPubMed
House, H. L. 1963. Nutritional diseases. In Steinhaus, E. A. (editor), Insect Pathology, Vol. 1. Academic Press, New York.Google Scholar
House, H. L. 1964a. Effects of dietetic nucleic acids and components on growth of Agria affinis (Fallén) (Diptera: Sarcophagidae). Can. J. Zool. 42: 801806.CrossRefGoogle Scholar
House, H. L. 1964b. Contributions of nutritional research to entomology. Proc. N. cent. Brch Am. Ass. econ. Ent. 19: 1320.Google Scholar
House, H. L. 1965a. Insect nutrition. In Rockstein, M. (editor), The Physiology of Insecta, Vol. II. Academic Press, New York.Google Scholar
House, H. L. 1965b. Digestion. In Rockstein, M. (editor), The Physiology of Insecta, Vol. II. Academic Press, New York.Google Scholar
House, H. L. 1965c. Effects of low levels of the nutrient content of a food and of nutrient imbalance on the feeding and the nutrition of a phytophagous larva, Celerio euphorbiae (Linnaeus) (Lepidoptera: Sphingidae). Can. Ent. 97: 6268.CrossRefGoogle Scholar
House, H. L. 1965d. Effects of vitamin A acetate and structurally related substances on growth and reproduction of Agria affinis (Fallén) (Diptera: Sarcophagidae). J. Insect Physiol. 11: 10391045.CrossRefGoogle ScholarPubMed
House, H. L. 1966a. Effects of vitamins E and A on growth and development and the essentiality of vitamin E for reproduction in the parasitoid Agria affinis (Fallén) (Diptera: Sarcophagidae). J. Insect Physiol. (In press.)Google Scholar
House, H. L. 1966b. Effects of varying the ratio between the amino acids and the other nutrients in conjunction with a salt mixture on the fly Agria affinis (Fall.). J. Insect Physiol. 12: 299310.CrossRefGoogle Scholar
House, H. L. 1966c. The effects of temperature on the nutritional requirements of an insect, Pseudosarcophaga affinis Auct. nec Fallén (Diptera: Sarcophagidae), and its probable ecological significance. Ann. ent. Soc. Amer. 12: 409417.Google Scholar
House, H. L., and Barlow, J. S.. 1956. Nutritional studies with Pseudosarcophaga affinis (Fall.), a dipterous parasite of the spruce budworm, Choristoneura fumiferana (Clem.). V. Effects of various concentrations of the amino acid mixture, dextrose, potassium ion, the salt mixture, and lard on growth and development; and a substitute for lard. Can. J. Zool. 34: 182189.CrossRefGoogle Scholar
House, H. L., and Barlow, J. S.. 1958. Vitamin requirements of the house fly, Musca domestica L. (Diptera: Muscidae). Ann. ent. Soc. Amer. 51: 299302.CrossRefGoogle Scholar
House, H. L., and Barlow, J. S.. 1960. Effects of oleic and other fatty acids on the growth rate of Agria affinis (Fall.) (Diptera: Sarcophagidae). J. Nutr. 72: 409414.CrossRefGoogle Scholar
House, H. L., and Barlow, J. S.. 1961. Effects of different diets of a host, Agria affinis (Fall.) (Diptera: Sarcophagidae), on the development of a parasitoid, Aphaereta pallipes (Say) (Hymenoptera: Braconidae). Can. Ent. 93: 10411044.CrossRefGoogle Scholar
House, H. L., and Barlow, J. S.. 1965. The effects of a new salt mixture developed for Agria affinis (Fallén) (Diptera: Sarcophagidae) on the growth rate, body weight, and protein content of the larvae. J. Insect Physiol. 11: 915918.CrossRefGoogle Scholar
House, H. L., Riordan, D. F. and Barlow, J. S.. 1958. Effects of thermal conditioning and of degree of saturation of dietary lipids on resistance of an insect to a high temperature. Can. J. Zool. 36: 629632.CrossRefGoogle Scholar
House, H. L., Welch, H. E. and Cleugh, T. R.. 1965. Food medium of prepared dog biscuit for the mass-production of the nematode DD 136 (Nematoda: Steinernematidae). Nature, Lond. 206: 847.CrossRefGoogle Scholar
Kasting, R., and McGinnis, A. J.. 1959. Nutrition of the pale western cutworm, Agrotis orthogonia Morr. (Lepidoptera: Noctuidae). II. Dry matter and nitrogen economy of larvae fed on sprouts of a hard red spring and a durum wheat. Can. J. Zool. 37: 713720.CrossRefGoogle Scholar
Kasting, R., and McGinnis, A. J.. 1963. Resistance of plants to insects—the role of insect nutrition. Agric. Inst. Rev. 18: 911.Google Scholar
Kennedy, J. S. 1953. Host plant selection in Aphididae. Trans. IXth int. Congr. Ent., Amsterdam 1951: 106113.Google Scholar
Lange, R., and Bronskill, J. F.. 1964. Reactions of Musca domestica L. (Diptera: Muscidae) to parasitism by Aphaerata pallipes (Say) (Hymenoptera: Braconidae), with special reference to host diet and parasitoid toxin. Z. Parasitenk. 25: 193210.CrossRefGoogle Scholar
Legay, J. M. 1958. Recent advances in silkworm nutrition. A. Rev. Ent. 3: 7586.CrossRefGoogle Scholar
Leius, K. 1960. Attractiveness of different foods and flowers to the adults of some hymenopterous parasites. Can. Ent. 93: 369376.CrossRefGoogle Scholar
Leius, K. 1961. Influence of various foods on fecundity and longevity of adults of Scambus buolianae (Htg.) (Hymenoptera: Ichneumonidae). Can. Ent. 93: 10791084.CrossRefGoogle Scholar
Long, C. 1961. Biochemists' handbook. E. & F. N. Spon, London.Google Scholar
Luckey, T. D. 1954. A single diet for all living organisms. Science N.Y. 120: 396398.CrossRefGoogle ScholarPubMed
Luckey, T. D. 1961. A study in comparative nutrition. Comp. Biochem. Physiol. 2: 100124.CrossRefGoogle ScholarPubMed
Maltais, J. B., and Auclair, J. L.. 1957. Factors in resistance of peas to the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae). 1. The sugar-nitrogen ratio. Can. Ent. 89: 365370.CrossRefGoogle Scholar
McCay, C. M., and Dilley, W. E.. 1927. Factor H in the nutrition of trout. Trans. Amer. Fish. Soc. 57: 250260.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.CrossRefGoogle Scholar
Meikle, J. E. S., and McFarlane, J. E.. 1965. The role of lipids in the nutrition of the house cricket, Acheta domesticus L. (Orthoptera: Gryllidae). Can. J. Zool. 43: 8798.CrossRefGoogle Scholar
Morrison, F. B. 1941. Feeds and feeding abridged, 7th ed. Morrison, Ithaca.Google Scholar
Rodriguez, J. G. 1960. Nutrition of the host and reaction to pests. Publs Am. Ass. Advmt Sci. 61: 149167.Google Scholar
Root, A. I., and Root, E. R.. 1940. The ABC and XYZ of bee culture. A. I. Root Co., Medina.Google Scholar
Royes, V. M., and Robertson, F. W.. 1964. The nutritional requirements and growth relations of different species of Drosophila. J. exp. Zool. 156: 105136.CrossRefGoogle Scholar
Sang, J. H. 1959. Circumstances affecting the nutritional requirements of Drosophila melanogaster. Ann. N.Y. Acad. Sci. 77: 352365.CrossRefGoogle Scholar
Sang, J. H. 1962. Relationships between protein supplies and B-vitamin requirements in axenically cultured Drosophila. J. Nutr. 77: 355368.CrossRefGoogle ScholarPubMed
Seamans, H. L. 1938. The pale western cutworm and its control. Can. Dep. Agric. Farmers' Bull. No. 59.Google Scholar
Shteinberg, D. M. 1955. Some aspects of the problem of adaptation of entomophagous and phytophagous insects to their nutrition. Trans. Zool. Inst. Acad. Sci. U.S.S.R. 21: 3643. (Translation by Hope, E. R., Directorate of Scientific Information Service, Defence Research Board, Ottawa, Canada.)Google Scholar
Smith, B. C. 1965. Growth and development of coccinellid larvae on dry foods (Coleoptera: Coccinellidae). Can. Ent. 97: 760768.CrossRefGoogle Scholar
Smith, J. M. 1957. Effects of the food plant of California red scale, Aonidiella aurantii (Mask.) on reproduction of its hymenopterous parasites. Can. Ent. 89: 219230.CrossRefGoogle Scholar
Vanderzant, E. S., Richardson, C. D. and Fort, S. W.. 1962. Rearing of the bollworm on artificial diet. J. econ. Ent. 55: 140.CrossRefGoogle Scholar
Villeneuve, J. L. 1962. Influence du régime alimentaire sur la concentration en acides aminés non proteigues dans l'hémolymphe des larves âgées d'Agria affinis (Fall.). J. Insect Physiol. 8: 585588.CrossRefGoogle Scholar
Wackernagel, H. 1965. The care of wild animals in zoological gardens. Image Medical Illustrated Roche, 15: 2832. (Published for the medical profession by Hoffman-La Roche, Ltd., Montreal.)Google Scholar
Wellington, W. G. 1965. Some maternal influences on progeny quality in the western tent caterpillar, Malacosoma pluviale (Dyar). Can. Ent. 97: 114.CrossRefGoogle Scholar
Wilkes, A. 1942. The influence of selection on the preferendum of a chalcid (Microplectron fuscipennis Zett.) and its significance in the biological control of an insect pest. Proc. R. Soc. (B) 130: 400415.Google Scholar