Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T17:45:08.227Z Has data issue: false hasContentIssue false

Spring emergence of Canadian Delia radicum and synchronization with its natural enemy, Aleochara bilineata

Published online by Cambridge University Press:  02 April 2012

L.D. Andreassen
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
U. Kuhlmann
Affiliation:
CABI Europe – Switzerland, 1 rue des Grillons, 2800 Delémont, Switzerland
J.W. Whistlecraft
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sanford Street, London, Ontario, Canada N5V 4T3
J.J. Soroka
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
P.G. Mason
Affiliation:
Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
O.O. Akinremi
Affiliation:
Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
N.J. Holliday*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1 Corresponding author (e-mail: Neil_Holliday@umanitoba.ca).

Abstract

To characterize time of spring emergence following post-diapause development, Delia radicum (L.) (Diptera: Anthomyiidae) from Saskatchewan, Manitoba, and southwestern Ontario were collected in fall, maintained over winter at 1 °C, then transferred to higher constant temperatures until adult emergence. At each location there were “early” and “late” phenotypes. Truncated normal models of temperature dependency of development rate were fitted for each phenotype from each location. We provide the first evidence of geographic variation in the criteria separating these phenotypes. Separation criteria and models for early and late phenotypes at the two prairie locations, approximately 700 km apart, were indistinguishable, but differed from those for Ontario. Prairie phenotypes developed more slowly than Ontario phenotypes, and more prairie individuals were of the late phenotype. Poor synchronization of spring emergence could impair predation of D. radicum eggs by adult Aleochara bilineata Gyllenhal (Coleoptera: Staphylinidae). Aleochara bilineata from Manitoba were reared and development rates modelled as for D. radicum. Models of development rates for the two species, when combined with simulated soil temperatures for two prairie locations, suggest that emergence of adult A. bilineata is well synchronized with availability of D. radicum eggs in prairie canola.

Résumé

Afin de caractériser le moment de l'émergence printanière qui suit le développement d'après la diapause, nous avons récolté des Delia radicum (L.) (Diptera : Anthomyiidae) dans des cultures de Saskatchewan, du Manitoba et du sud-ouest de l'Ontario à l'automne, les avons conservés durant l'hiver à 1 °C, puis transférés à des températures constantes plus élevées jusqu’à l'émergence des adultes. À chaque site, il y avait des phénotypes « hâtif » et « tardif ». Des modèles normaux tronqués de la dépendance du taux de développement de la température ont pu être ajustés à chaque phénotype à chacun des sites. Nous présentons les premières données qui montrent une variation géographique des critères qui séparent ces phénotypes. Les critères de séparation et les modèles des phénotypes hâtifs et tardifs ne peuvent être distingués entre les sites des prairies distants d'environ 700 km, mais ceux-ci se démarquent de ceux de l'Ontario. Les phénotypes des prairies se développent plus lentement que les phénotypes de l'Ontario et un plus grand nombre des D. radicum des prairies appartiennent au phénotype tardif. Une faible synchronisation de l'émergence printanière pourrait entraver la prédation des œufs de D. radicum par les adultes d'Alaeochara bilineata Gyllenhal (Coleoptera : Staphylinidae). Nous avons fait des élevages d'A. bilineata du Manitoba et modélisé leur taux de développement comme nous l'avions fait pour D. radicum. Les modèles des taux de développement des deux espèces, combinés aux températures simulées des sols de deux sites des prairies, indiquent que l'émergence des adultes d'A. bilineata est bien synchronisée avec la disponibilité des œufs de D. radicum dans les cultures de colza des prairies.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinremi, O.O., McGinn, S.M., and Barr, A.G. 1996. Simulation of soil moisture and other components of the hydrological cycle using a water budget approach. Canadian Journal of Soil Science, 75: 133142.CrossRefGoogle Scholar
Biron, D.G., Langlet, X., Boivin, G., and Brunel, E. 1998.Expression of early and late-emerging phenotypes in both diapausing and nondiapausing Delia radicum (L.) pupae. Entomologia Experimentalis et Applicata, 87: 119124. doi:10.1046/j.1570-7458.1998.00313.x.CrossRefGoogle Scholar
Biron, D.G., Coderre, D., Boivin, G., Brunel, E., and Nénon, J.P. 2002. Genetic variability and expression of phenological and morphological differences in populations of Delia radicum (Diptera: Anthomyiidae). The Canadian Entomologist, 134: 311327. doi:10.4039/Ent134311-3.CrossRefGoogle Scholar
Bracken, G.K. 1988. Seasonal occurrence and infestation potential of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attacking rutabaga in Manitoba as determined by captures of females in water traps. The Canadian Entomologist, 120: 609614. doi:10.4039/Ent120609-7.CrossRefGoogle Scholar
Broatch, J.S., Dosdall, L.M., Clayton, G.W., Harker, K.N., and Yang, R.C. 2006. Using degree-day and logistic models to predict emergence pattern and seasonal flights of the cabbage maggot and seed corn maggot (Diptera: Anthomyiidae) in canola. Environmental Entomology, 35: 11661177. doi:10.1603/0046-225X(2006)35[1166:UDALMT]2.0.CO;2.</jrn>.CrossRefGoogle Scholar
Broatch, J.S., Dosdall, L.M., Clayton, G.W., Harker, K.N., and Yang, R.C. 2008. Emergence and seasonal activity of the entomophagous rove beetle Aleochara bilineata (Coleoptera: Staphylinidae) in canola in western Canada. Environmental Entomology, 37: 14511460. PMID: 19161688 doi:10.1603/0046-225X-37.6.1451.CrossRefGoogle ScholarPubMed
Brooks, A.R. 1951. Identification of the root maggots (Diptera: Anthomyiidae) attacking cruciferous crops in Canada, with notes on biology and control. The Canadian Entomologist, 83: 109120. doi:10.4039/Ent83109-5.CrossRefGoogle Scholar
Chapman, L.J., and Brown, D.M. 1966. The Canada land inventory report 3: the climates of Canada for agriculture. Department of Forestry and Rural Development, Ottawa, Ontario.Google Scholar
Collier, R.H., and Finch, S. 1983. Effects of temperature and duration of low temperatures in regulating diapause development of the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata, 34: 193200. doi:10.1007/BF00338669.CrossRefGoogle Scholar
Collier, R.H., Finch, S., and Anderson, M. 1989 a. Laboratory studies on late-emergence in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata, 50: 233240. doi:10.1007/BF00341172.CrossRefGoogle Scholar
Collier, R.H., Finch, S., and Anderson, M. 1989 b. Oxygen uptake by pupae of early- and late-emerging biotypes of the cabbage root fly Delia radicum L. Functional Ecology, 3: 613616. doi:10.2307/2389576.Google Scholar
Danilevsky, A.S., Goryshin, N.I., and Tyshchenko, V.P. 1970. Biological rhythms in terrestrial arthropods. Annual Review of Entomology, 15: 201244. doi:10.1146/annurev.en.15.010170.001221.CrossRefGoogle Scholar
Environment Canada. 2002. Canadian climate data [online]. Available from http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html [accessed October 2007].Google Scholar
Finch, S. 1974. Feeding and associated behaviour of the adult cabbage root flyErioschia brassicae (Bch.) (Dipt., Anthomyiidae) under laboratory conditions. Bulletin of Entomological Research, 63: 661671. doi:10.1017/S0007485300047891.CrossRefGoogle Scholar
Finch, S., and Coaker, T.H. 1969. A method for the continuous rearing of the cabbage root fly Erioschia brassicae (Bch.) and some observations on its biology. Bulletin of Entomological Research 58: 619627. doi:10.1017/S0007485300057345.CrossRefGoogle Scholar
Finch, S., and Collier, R.H. 1983. Emergence of flies from overwintering populations of cabbage root fly pupae. Ecological Entomology, 8: 2936. doi:10.1111/j.1365-2311.1983.tb00479.x.CrossRefGoogle Scholar
Finch, S., and Collier, R.H. 1985. Laboratory studies on aestivation in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata, 38: 137143. doi:10.1007/BF00361924.CrossRefGoogle Scholar
Finch, S., Collier, R.H., and Skinner, G. 1986. Local population differences in emergence of cabbage root flies from south-west Lancashire: implications for pest forecasting and population divergence. Ecological Entomology, 11: 139145. doi:10.1111/j.1365-2311.1986.tb00288.x.CrossRefGoogle Scholar
Finch, S., Bromand, B., Brunel, E., Bues, M., Collier, R.H., Dunne, R., et al. 1988. Emergence of cabbage root flies from puparia collected throughout northern Europe. In Progress on Pest Management in Field Vegetables: Proceedings of the Commission of the European Communities/International Organization for Biological Control Experts' Group Meeting, Rennes, France 20–22 November 1985. Edited by Cavalloro, R. and Pelerents, C.. Balkema, A.A., Rotterdam, The Netherlands. pp. 3336.Google Scholar
Gallant, A.R. 1987. Nonlinear statistical models. John Wiley and Sons, New York.CrossRefGoogle Scholar
Griffiths, G.C.D. 1986 a. Phenology and dispersion of Delia radicum (L.) (Diptera: Anthomyiidae) in canola fields at Morinville, Alberta. Quaestiones Entomologicae, 22: 2950.Google Scholar
Griffiths, G.C.D. 1986 b. Relative abundance of the root maggots Delia radicum (L.) and D. floralis (Fallen) (Diptera: Anthomyiidae) as pests of canola in Alberta. Quaestiones Entomologicae, 22: 253260.Google Scholar
Griffiths, G.C.D. 1991. Cyclorrhapha II (Schizophora: Calyptratae) Anthomyiidae. Vol. 8. Part2. No. 8. E. Schweizerbart'sche Verlagsbuchhandlung (Naegele u. Obermiller), Stuttgart, Germany.Google Scholar
Hargreaves, G.H., and Samani, L.C. 1982. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108: 225230.CrossRefGoogle Scholar
Hemachandra, K.S. 2004. Parasitoids of Delia radicum (Diptera: Anthomyiidae) in canola:assessment of potential agents for classical biological control. Ph.D. thesis, University of Manitoba, Winnipeg, Manitoba.Google Scholar
Hemachandra, K.S., Holliday, N.J., Mason, P.G., Soroka, J.J., and Kuhlmann, U. 2007. Comparative assessment of the parasitoid community of Delia radicum in the Canadian prairies and Europe: a search for classical biological control agents. Biological Control, 43: 8594. doi:10.1016/j.biocontrol.2007.07.005.CrossRefGoogle Scholar
Hughes, R.D. 1960. Induction of diapause in Erioschia brassicae Bouche (Dipt., Anthomyiidae). Journal of Experimental Biology, 37: 218223.CrossRefGoogle Scholar
Johansen, T.J., and Meadow, R. 2006. Population differences in emergence of brassica root flies (Diptera: Anthomyiidae). Environmental Entomology, 35: 11611165. doi:10.1603/0046-225X(2006)35[1161:PDIEOB]2.0.CO;2.CrossRefGoogle Scholar
Johnsen, S., Guttierez, A.P., and Freuler, J. 1990. The within season population dynamics of the cabbage root fly (Delia radicum [L.]). A simulation model. Mitteilungen der schweizerischen entomologische Gesellschaft, 63: 451463.Google Scholar
Jonasson, T. 1994. Parasitoids of Delia root flies in brassica vegetable crops: coexistence and niche separation in two Aleochara species (Coleoptera: Staphylinidae). Norwegian Journal of Agricultural Sciences Supplement, 16: 379386.Google Scholar
Kvalseth, T.O. 1985. Cautionary note about R2. The American Statistician, 39: 279285. doi:10.2307/2683704.Google Scholar
Lactin, D.J., Holliday, N.J., Johnson, D.L., and Craigen, R. 1995. Improved rate model of temperature-dependent development by arthropods. Environmental Entomology, 24: 6875.CrossRefGoogle Scholar
Lamb, R.J. 1992. Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. Environmental Entomology, 21: 1019.CrossRefGoogle Scholar
Nair, K.S.S., and McEwen, F.L. 1975. Ecology of the cabbage maggot, Hylemya brassicae (Diptera: Anthomyiidae), in rutabaga in southwestern Ontario, with some observations on other root maggots. The Canadian Entomologist, 107: 343354. doi:10.4039/Ent107343-4.CrossRefGoogle Scholar
Read, D.C. 1962. Notes on the life history of Aleochara bilineata (Gyll.) (Coleoptera: Staphylinidae), and on its potential value as a control agent for the cabbage maggot, Hylemya brassicae (Bouche) (Diptera: Anthomyiidae). The Canadian Entomologist, 94: 417424. doi:10.4039/Ent94417-4.CrossRefGoogle Scholar
Read, D.C. 1969. Rearing the cabbage maggot with and without diapause. The Canadian Entomologist, 101: 725737. doi:10.4039/Ent101725-7.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J. 1995. Biometry: the principles and practices of statistics in biological research. 3rd ed. W.H. Freeman and Company, New York.Google Scholar
Soroka, J.J., Kuhlmann, U., Floate, K.D., Whistlecraft, J., Holliday, N.J., and Boivin, G. 2002. Delia radicum (L.), cabbage maggot (Diptera: Anthomyiidae). In Biological control programmes in Canada. Edited by Mason, P.G. and Huber, J.T.. CABI Publishing, Wallingford, United Kingdom. pp. 99104.Google Scholar
Soroka, J.J., Dosdall, L.M., Olfert, O.O., and Seidle, E. 2004. Root maggots (Delia spp., Diptera: Anthomyiidae) in prairie canola (Brassica napus L. and B. rapa L.): spatial and temporal surveys of root damage and prediction of damage levels. Canadian Journal of Plant Science, 84: 11711182.CrossRefGoogle Scholar
Southwood, T.R.E., and Siddorn, J.W. 1965. The temperature beneath insect emergence traps of various types. Journal of Animal Ecology, 34: 581585. doi:10.2307/2451.CrossRefGoogle Scholar
Swailes, G.E. 1961. Laboratory studies on mating and oviposition of Hylemya brassicae (Bouché) (Diptera: Anthomyiidae). The Canadian Entomologist 93: 940943. doi:10.4039/Ent93940-10.CrossRefGoogle Scholar
Tauber, C.A., and Tauber, M.J. 1981. Insect seasonal cycles: genetics and evolution. Annual Review of Ecology and Systematics, 12: 281308.doi:10.1146/annurev.es.12.110181.001433.CrossRefGoogle Scholar
Taylor, F. 1981. Ecology and evolution of physiological time in insects. The American Naturalist, 117: 123. doi:10.1086/283683.CrossRefGoogle Scholar
Turnock, W.J., and Boivin, G. 1997. Inter- and intrapopulation differences in the effects of temperature on postdiapause development of Delia radicum. Entomologia Experimentalis et Applicata, 84: 255265. doi:10.1046/j.1570-7458.1997.00223.x.CrossRefGoogle Scholar
Turnock, W.J., Jones, T.H., Reader, P.M. 1985. Effects of cold stress during diapause on the survival and development of Delia radicum (Diptera: Anthomyiidae) in England. Oecologia, 67: 506510. doi:10.1007/BF00790021.CrossRefGoogle Scholar
Turnock, W.J., Boivin, G., and Whistlecraft, J.W. 1995. Parasitism of overwintering puparia of the cabbage maggot Delia radicum (L.) (Diptera: Anthomyiidae), in relation to host density and weather factors. The Canadian Entomologist, 127: 535542. doi:10.4039/Ent127535-4.CrossRefGoogle Scholar
Wadsworth, J.T. 1915. On the life-history of Aleochara bilineata, Gyll., a staphylinid parasite of Chortophila brassicae, Bouché. Journal of Economic Biology, 10: 117.Google Scholar
Walgenbach, J.F., Eckenrode, C.J., and Smith, R.W. 1993. Emergence patterns of Delia radicum (Diptera: Anthomyiidae) populations from North Carolina and New York. Environmental Entomology, 22: 559566.CrossRefGoogle Scholar
Whistlecraft, J.W., Harris, C.R., Tolman, J.H., and Tomlin, A.D. 1985. Mass-rearing technique for Aleochara bilineata (Coleoptera: Staphylinidae). Journal of Economic Entomology, 78: 995997.CrossRefGoogle Scholar