Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T22:13:10.678Z Has data issue: false hasContentIssue false

Study of mosquito (Culicidae) larvae and characterisation of water bodies in urban and periurban areas

Published online by Cambridge University Press:  12 July 2023

Luis M. Rodríguez-Mártínez
Affiliation:
Unidad de Investigación Entomológica y Bioensayos-Centro-Servicios de Salud de Tabasco, Melchor Ocampo 113. Col. Atasta de Serra C.P. 86100, Villahermosa, Tabasco, Mexico
Fabián Correa-Morales
Affiliation:
Centro Nacional de Programas Preventivos y Control de Enfermedades, Benjamín Franklin 132, Col. Escandón, C.P. 11800. México City, Mexico
Cassandra González-Acosta
Affiliation:
Servicios de Salud de Morelos. Callejón Borda 3, Cuernavaca Centro, 62000 Cuernavaca, Morelos, Mexico
Miguel Moreno-García*
Affiliation:
Unidad de Investigación Entomológica y Bioensayos-Centro Regional de Control de Vectores Panchimalco-Servicios de Salud de Morelos, Emiliano Zapata 95, C.P. 62900, Jojutla, Morelos, Mexico
*
Corresponding author: Miguel Moreno-García; Email: miguelmoga2000@yahoo.com.mx

Abstract

Urbanisation has modified the distribution and community composition of mosquito species (Culicidae). Habitat disturbance may increase the risk of loss of species diversity and the occurrence of vector-borne diseases. Studies on the presence of larvae and the eco-physicochemical characteristics of water bodies near urban areas provide information on the risk of these diseases. In this study, the presence of larvae in different types of urban and periurban water bodies in Villahermosa City, Tabasco, Mexico was analysed. The eco-physicochemical characteristics of each collecting site were measured. A total of 67 528 larvae were collected, 1366 were identified to species, and 15 species were observed. Although Culex spp. were the most dominant species, Anopheles albimanus was the only species present in all habitats. Despite the large variability in the parameters measured (especially in physicochemical parameters; e.g., pH, electrical conductivity, total dissolved solids), differences were observed among the breeding sites. Weak correlations were found between eco-physicochemical parameters and species presence. Predators may have a major role in determining community processes in the region. Habitat disturbance may be responsible for eco-physicochemical variations altering mosquito community composition, resulting in the loss of endemic mosquito species and increasing the risk of vector-borne diseases in Villahermosa.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Katie Marshall

References

Abella-Medrano, C.A., Ibáñez-Bernal, S., MacGregor-Fors, I., and Santiago-Alarcon, D. 2015. Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land-use types within a Neotropical montane cloud forest matrix. Parasites & Vectors, 8: 487.CrossRefGoogle ScholarPubMed
Adebote, D.A., Oniye, S.J., and Muhammed, Y.A. 2019. Studies on mosquitoes breeding in rock pools on inselbergs around Zaria, northern Nigeria. Journal of Vector-Borne Diseases, 45: 2128.Google Scholar
Adler, P.H., and Courtney, G.W. 2019. Ecological and societal services of aquatic Diptera. Insects, 10: 70.CrossRefGoogle ScholarPubMed
Areu-Rangel, O.S., Cea, L., Bonasia, R., and Espinosa-Echavarria, V.J. 2019. Impact of urban growth and changes in land use on river flood hazard in Villahermosa, Tabasco (Mexico). Water, 11: 304.CrossRefGoogle Scholar
Baak-Baak, C.M., Arana-Guardia, R., Cigarroa-Toledo, N., Lorono-Pino, M.A., Reyes-Solis, G., Machain-Williams, C., et al. 2014. Vacant lots: productive sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Merida City, Mexico. Journal of Medical Entomology, 51: 475483.CrossRefGoogle ScholarPubMed
Balvanera, P., Siddique, I., Dee, L., Paquette, A., Isbell, F., Gonzalez, A., et al. 2014. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. BioScience, 64: 4957.CrossRefGoogle Scholar
Bashar, K., Rahman, M.S., Nodi, I.J., and Howlader, A.J. 2016. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh. Pathogens and Global Heath, 110: 4861.CrossRefGoogle ScholarPubMed
Becker, N., Petrić, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., and Kaiser, A. 2010. Mosquitoes and their control, 2nd edition. Springer, Heidelberg, Germany.CrossRefGoogle Scholar
Collins, C.M., Bonds, J.A.S., Quinlan, M.M., and Mumford, J.D. 2019. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Medical and Veterinary Entomology, 33: 115.CrossRefGoogle ScholarPubMed
Culler, L.E. and Lamp, W.O. 2009. Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology, 54: 20032014.CrossRefGoogle Scholar
Environmental Protection Agency. 1993. Natural wetlands and urban stormwater: potential impacts and management. Office of Wetlands, Oceans and Watersheds Wetlands Division, Environmental Protection Agency, Washington, D.C., United States of America.Google Scholar
Farajollahi, A., Fonseca, D.M., Kramer, L.D., and Marm-Kilpatrick, A. 2011. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection Genetics and Evolution, 11: 15771585.CrossRefGoogle ScholarPubMed
Food and Agriculture Organisation of the United Nations. 2015. Global Forest Resources Assessment 2015. How are the world’s forests changing? Second edition. Food and Agriculture Organisation of the United Nations, Rome, Italy.Google Scholar
Huzortey, A.A., Kudom, A.A., Mensah, B.A., Sefa-Ntiri, B., Anderson, B., and Akyea, A. 2022. Water quality assessment in mosquito breeding habitats based on dissolved organic matter and chlorophyll measurements by laser-induced fluorescence spectroscopy. PLOS One, 17: e0252248.CrossRefGoogle ScholarPubMed
Ibañez-Bernal, S. and Martínez-Campos, C. 1994. Identification key of common mosquito larvae in urban and suburban areas of the Mexican Republic (Diptera: Culicidae) [in Spanish]. Folia Entomológica Mexicana, 92: 4373.Google Scholar
Instituto Nacional de Estadística y Geografía. 2017. Statistical and geographic yearbook of Tabasco [in Spanish]. Instituto Nacional de Estadística y Geografía Aguascalientes, Mexico.Google Scholar
Jiménez-Sastré, A., Boldo-León, X., Priego-Álvarez, H., Quevedo-Tejero, E., and Zavala-González, M.A. 2012. Geographic distribution of dengue fever cases in flooded zones from Villahermosa, Tabasco [in Spanish]. Revista Chilena de Infectologia, 29: 3236.CrossRefGoogle ScholarPubMed
Kengluecha, A., Singhasivanon, P., Tiensuwan, M., Jones, J.W., and Sithiprasasna, R. 2005. Water quality and breeding habitats of anopheline mosquito in northwestern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 36: 4653.Google ScholarPubMed
Manrique-Saide, P., Uc, V., Prado, C., Carmona, C., Vadillo, J., Chan, R., et al. 2012. Storm sewers as larval habitats for Aedes aegypti and Culex spp. in a neighborhood of Merida, Mexico. Journal of the American Mosquito Control Association, 28: 255257.CrossRefGoogle Scholar
Morse, S.S. 1995. Factors in the emergence of infectious diseases. Emerging Infectious Diseases, 1: 715.CrossRefGoogle ScholarPubMed
Ortega-Morales, A.I., Méndez-López, R., Garza-Hernández, J.A., González-Álvarez, V.H., Ruiz-Arrondo, I., Huerta-Jiménez, H., et al. 2019. The mosquitoes (Diptera: Culicidae) of Tabasco, Mexico. Journal of Vector Ecology, 44: 5767.CrossRefGoogle ScholarPubMed
Peckarsky, B.L., Cowan, C.A., Penton, M.A., and Anderson, C. 1993. Sublethal consequences of stream-dwelling predatory stoneflies on mayfly growth and fecundity. Ecology, 74: 18361846.CrossRefGoogle Scholar
Perevochtchikova, M. and Lezema de la Torre, J.L. 2010. Causes of a disaster: 2007 floods in Tabasco, Mexico [in Spanish]. Journal of Latin American Geography, 9: 7398.Google Scholar
Pérez-Menzies, M., Cutiño-Alba, Y., Cid-Acosta, Y., Torres-Guayanes, G., Castillo-Quesada, R.M., Alfonso-Herrera, Y., et al. 2018. Presencia larval de Culex (Culex) interrogator (Dyar and Knab) (Diptera: Culicidae) en Cuba [Larval presence of Culex (Culex) interrogator (Dyar and Knab) (Diptera: Culicidae) in Cuba]. Revista Cubana de Medicina Tropical, 70: 18.Google Scholar
Rodríguez-Martínez, L.M., Yzquierdo-Gómez, P., González-Acosta, C., and Correa-Morales, F. 2020. First record of Aedes (Ochlerotatus) fulvus in Tabasco and distribution notes of other Aedes in Mexico [in Spanish]. Southwestern Entomologist, 45: 263268.CrossRefGoogle Scholar
Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., et al. 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics, 39: 119.CrossRefGoogle Scholar
Shin, D., O’Meara, G.F., Civana, A., Shroyer, D.A., and Miqueli, E. 2016. Culex interrogator (Diptera: Culicidae), a mosquito species new to Florida. Journal of Vector Ecology, 41: 316319.CrossRefGoogle ScholarPubMed
Suter, G.W. II. 2007. Ecological risk assessment. Second edition. CRC Press, Boca Raton, Florida, United States of America.Google Scholar
Tadesse, D., Yohannes, M., and Assmelash, T. 2011. Characterization of mosquito breeding sites in and in the vicinity of Tigray microdams . Ethiopian Journal of Health Sciences, 21: 5766.Google Scholar
Ter Braak, C.J.F. and Smilauer, P. 2002. CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination. Version 4.5. Microcomputer Power, New York, New York, United States of America.Google Scholar
Torres-Chable, O., Baak-Baak, C., Cigarroa-Toledo, N., Zaragoza, C., Arjona-Jiménez, G., Moreno-Perez, G., et al. 2017. Mosquito fauna in home environments of Tabasco, Mexico. Southwestern Entomology, 42: 969982.CrossRefGoogle Scholar
Villarreal-Treviño, C., Ríos-Delgado, J.C., Penilla-Navarro, R.P., Rodríguez, A.D., López, J.H., Nettel-Cruz, J.A., et al. 2020. Composition and abundance of anopheline species according to habitat diversity in Mexico. Salud Publica de Mexico, 62: 388401.CrossRefGoogle ScholarPubMed
World Health Organisation. 2013. Larval source management: a supplementary measure for malaria vector control: an operational manual. World Health Organisation, Geneva, Switzerland.Google Scholar
Supplementary material: PDF

Rodríguez-Mártínez et al. supplementary material

Rodríguez-Mártínez et al. supplementary material 1

Download Rodríguez-Mártínez et al. supplementary material(PDF)
PDF 77.8 KB
Supplementary material: PDF

Rodríguez-Mártínez et al. supplementary material

Rodríguez-Mártínez et al. supplementary material 2

Download Rodríguez-Mártínez et al. supplementary material(PDF)
PDF 129.2 KB